An Assessment of the Bearing Capacity of High-Strength-Concrete-Filled Steel Tubular Columns Through Finite Element Analysis
Abstract
:1. Introduction
2. Numerical Model
2.1. Constitutive Model of Materials
2.2. Finite Element Model Establishment
2.3. Boundary Conditions and Contact Properties
3. Standard Procedures
3.1. Modulus of Elasticity
3.2. Limitations
4. Validation of Finite Element Model
5. Results and Discussion
5.1. Sensitivity Analysis
5.2. Results of Validation Study
5.3. Confinement Factor
5.4. Relative Slenderness
5.5. Approach Coefficient Proposal
6. Conclusions
- •
- The numerical results aligned with the experimental data with a relative error of less than 10% for load-bearing capacity.
- •
- The model did not address global slenderness (length-to-diameter ratio), an important variable for comprehensive structural assessment.
- •
- The analytical models were primarily conservative, missing the concrete core’s confinement strength gains—only the Chinese and European standards aligned closely with the experimental results.
- •
- The Chinese (GB 50936) and European (EC4) codes overestimated some load capacity values (up to 14.9% and 8.7%, respectively), while the American (AISC 360) and Brazilian (NBR 8800) standards underestimated the ultimate loads (to 23.3% and 31.6%, respectively).
- •
- An approach coefficient was proposed to improve standard predictions; however, it is valid only for compact sections, and the results were impactful for predicting bearing capacity. The most significant improvement in prediction was for NBR.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Notation
concrete section area | |
gross section area | |
steel section area | |
coefficient for effective stiffness | |
modulus of elasticity of steel | |
modulus of elasticity of concrete | |
average modulus of elasticity of concrete | |
equivalent stiffness | |
fracture energy | |
moment of inertia of concrete section | |
moment of inertia of steel section | |
shape factor for CDP | |
effective length | |
axial yield strength of section | |
critical buckling force | |
maximum aggregate diameter | |
compressive strength of concrete | |
characteristic strength of concrete | |
residual stress | |
ultimate strength of steel | |
yield strength of steel | |
tube thickness | |
column section shape factor | |
eccentricity | |
strain | |
maximum strain of unconfined concrete | |
maximum strain of confined concrete | |
plastic strain of steel | |
ultimate strain of steel | |
yield strain of steel | |
steel contribution factor | |
concrete contribution factor | |
relative slenderness ratio | |
slenderness limit for compact section | |
slenderness limit for noncompact section | |
viscosity parameter | |
confinement factor | |
stress | |
biaxial compressive yield stress of concrete | |
uniaxial compressive yield stress of concrete | |
axial resistance reduction factor | |
concrete expansion angle |
References
- Han, L.-H. Theory of Concrete-Filled Steel Tubular Structures; Springer Nature: Dordrecht, The Netherlands, 2024. [Google Scholar] [CrossRef]
- Dabaon, M.; El-Boghdadi, M.; Hassanein, M. Experimental investigation on concrete-filled stainless steel stiffened tubular stub columns. Eng. Struct. 2009, 31, 300–307. [Google Scholar] [CrossRef]
- Elyoussef, M.; Elgriw, M.; Abed, F. FE Parametric study of the Compressive Behavior of CFSTs. In Proceedings of the 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), Manama, Bahrain, 15–17 April 2019; pp. 1–5. [Google Scholar]
- Han, L.-H.; Li, W.; Bjorhovde, R. Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. J. Constr. Steel Res. 2014, 100, 211–228. [Google Scholar] [CrossRef]
- Liew, J.R.; Xiong, M.; Xiong, D. Design of Concrete Filled Tubular Beam-columns with High Strength Steel and Concrete. Structures 2016, 8, 213–226. [Google Scholar] [CrossRef]
- Elchalakani, M.; Ayough, P.; Yang, B. Single Skin and Double Skin Concrete Filled Tubular Structures: Analysis and Design; A Volume in Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Gao, X.-L.; Shen, S.-Y.; Chen, G.-X.; Pang, R.; Mao, M. Experimental and numerical study on axial compressive behaviors of reinforced UHPC-CFST composite columns. Eng. Struct. 2023, 278, 115315. [Google Scholar] [CrossRef]
- Thai, H.-T.; Thai, S.; Ngo, T.; Uy, B.; Kang, W.-H.; Hicks, S.J. Reliability considerations of modern design codes for CFST columns. J. Constr. Steel Res. 2021, 177, 106482. [Google Scholar] [CrossRef]
- Wang, X.; Fan, F.; Lai, J. Strength behavior of circular concrete-filled steel tube stub columns under axial compression: A review. Constr. Build. Mater. 2022, 322, 126144. [Google Scholar] [CrossRef]
- Zhou, Z. Unified Model for Axial Bearing Capacity of Concrete-Filled Steel Tubular Circular Columns Based on Hoek–Brown Failure Criterion. Buildings 2023, 13, 2408. [Google Scholar] [CrossRef]
- Sadat, S.I.; Ding, F.-X.; Lyu, F.; Lessani, N.; Liu, X.; Yang, J. Unified prediction models for mechanical properties and stress-strain relationship of dune sand concrete. Comput. Concr. 2023, 32, 595. [Google Scholar] [CrossRef]
- Sadat, S.I.; Ding, F.-X.; Lyu, F.; Wang, E.; Sun, H.; Akhunzada, K.; Lessani, N. Axial compression behavior and reliable design approach of rectangular dune sand concrete-filled steel tube stub columns. Dev. Built Environ. 2024, 18, 100437. [Google Scholar] [CrossRef]
- Sadat, S.I.; Ding, F.-X.; Wang, M.; Lyu, F.; Akhunzada, K.; Xu, H.; Hui, B. Behavior and Reliable Design Methods of Axial Compressed Dune Sand Concrete-Filled Circular Steel Tube Columns. Appl. Sci. 2024, 14, 6939. [Google Scholar] [CrossRef]
- Lai, Z.; Varma, A.H. High-Strength Rectangular CFT Members: Database, Modeling, and Design of Short Columns. J. Struct. Eng. 2018, 144, 04018036. [Google Scholar] [CrossRef]
- Li, G.C.; Chen, B.W.; Yang, Z.J.; Ge, H.B.; Li, X. Axial behavior of high-strength concrete-filledhigh-strength square steel tubular stub columns. Adv. Steel Constr. 2021, 17, 158–168. [Google Scholar] [CrossRef]
- Fang, H.; Li, Q.-Y.; Chan, T.-M.; Young, B. Behaviour and design of high-strength octagonal CFST short columns subjected to combined compression and bending. J. Constr. Steel Res. 2023, 200, 107679. [Google Scholar] [CrossRef]
- Shi, S.; Pang, M.; Lou, T. Numerical Assessment on Continuous Reinforced Normal-Strength Concrete and High-Strength Concrete Beams. Buildings 2023, 13, 1157. [Google Scholar] [CrossRef]
- Papanikolaou, V.K.; Kappos, A.J. Confinement-sensitive plasticity constitutive model for concrete in triaxial compression. Int. J. Solids Struct. 2007, 44, 7021–7048. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, D.; Li, P. Axial compressive behaviour and confinement effect of round-ended rectangular CFST with different central angles. Compos. Struct. 2022, 285, 115193. [Google Scholar] [CrossRef]
- Wei, Y.; Jiang, C.; Wu, Y.-F. Confinement effectiveness of circular concrete-filled steel tubular columns under axial compression. J. Constr. Steel Res. 2019, 158, 15–27. [Google Scholar] [CrossRef]
- de Oliveira, W.L.A.; De Nardin, S.; Debs, A.L.H.d.C.E.; El Debs, M.K. Influence of concrete strength and length/diameter on the axial capacity of CFT columns. J. Constr. Steel Res. 2009, 65, 2103–2110. [Google Scholar] [CrossRef]
- Wang, F.-C.; Xie, W.-Q.; Li, B.; Han, L.-H. Experimental study and design of bond behavior in concrete-filled steel tubes (CFST). Eng. Struct. 2022, 268, 114750. [Google Scholar] [CrossRef]
- Santini, T.; Ramires, F.B. Comportamento experimental de pilares mistos tubulares circulares submetidos a força axial excêntrica. Braz. J. Dev. 2021, 7, 6363–6391. [Google Scholar] [CrossRef]
- Furlong, R.W. Strength of Steel-Encased Concrete Beam Columns. J. Struct. Div. 1967, 93, 113–124. [Google Scholar] [CrossRef]
- Gardner, N.J.; Jacobson, R.E. Structural Behavior of Concrete Filled Steel Tubes. J. Proc. 1967, 64, 404–413. [Google Scholar]
- Knowles, R.; Park, R. Strength of Concrete Filled Steel Tubular Columns. J. Struct. Div. 1969, 95, 2565–2588. [Google Scholar] [CrossRef]
- Bridge, R.; O’shea, M.; Gardner, P.; Grigson, R.; Tyrell, J. Local buckling of square thin-walled steel tubes with concrete infill. In Proceedings of the International Conference on Structural Stability and Design, Sydney, Australia, 30 October–1 November 1995; pp. 307–314. [Google Scholar]
- Schneider, S.P.; Alostaz, Y.M. Experimental Behavior of Connections to Concrete-filled Steel Tubes. J. Constr. Steel Res. 1998, 45, 321–352. [Google Scholar] [CrossRef]
- O’Shea, M.D.; Bridge, R.Q. Design of Circular Thin-Walled Concrete Filled Steel Tubes. J. Struct. Eng. 2000, 126, 1295–1303. [Google Scholar] [CrossRef]
- Uy, B. Axial compressive strength of short steel and composite columns fabricated with high stength steel plate. Steel Compos. Struct. 2001, 1, 171–185. [Google Scholar] [CrossRef]
- Han, L.-H. Tests on stub columns of concrete-filled RHS sections. J. Constr. Steel Res. 2002, 58, 353–372. [Google Scholar] [CrossRef]
- Sakino, K.; Nakahara, H.; Morino, S.; Nishiyama, I. Behavior of Centrally Loaded Concrete-Filled Steel-Tube Short Columns. J. Struct. Eng. 2004, 130, 180–188. [Google Scholar] [CrossRef]
- Zeghiche, J.; Chaoui, K. An experimental behaviour of concrete-filled steel tubular columns. J. Constr. Steel Res. 2005, 61, 53–66. [Google Scholar] [CrossRef]
- De Nardin, S.; El Debs, A.L.H.C. Axial load behaviour of concrete-filled steel tubular columns. Proc. Inst. Civ. Eng.—Struct. Build. 2007, 160, 13–22. [Google Scholar] [CrossRef]
- Gupta, P.; Sarda, S.; Kumar, M. Experimental and computational study of concrete filled steel tubular columns under axial loads. J. Constr. Steel Res. 2007, 63, 182–193. [Google Scholar] [CrossRef]
- Uenaka, K.; Kitoh, H.; Sonoda, K. Concrete filled double skin circular stub columns under compression. Thin-Walled Struct. 2010, 48, 19–24. [Google Scholar] [CrossRef]
- Han, L.-H.; Ren, Q.-X.; Li, W. Tests on stub stainless steel–concrete–carbon steel double-skin tubular (DST) columns. J. Constr. Steel Res. 2011, 67, 437–452. [Google Scholar] [CrossRef]
- Zhao, H.; Kunnath, S.K.; Yuan, Y. Simplified nonlinear response simulation of composite steel–concrete beams and CFST columns. Eng. Struct. 2010, 32, 2825–2831. [Google Scholar] [CrossRef]
- Liew, J.R.; Xiong, D. Ultra-High Strength Concrete Filled Composite Columns for Multi-Storey Building Construction. Adv. Struct. Eng. 2012, 15, 1487–1503. [Google Scholar] [CrossRef]
- Portolés, J.; Serra, E.; Romero, M. Influence of ultra-high strength infill in slender concrete-filled steel tubular columns. J. Constr. Steel Res. 2013, 86, 107–114. [Google Scholar] [CrossRef]
- Tao, Z.; Song, T.-Y.; Uy, B.; Han, L.-H. Bond behavior in concrete-filled steel tubes. J. Constr. Steel Res. 2016, 120, 81–93. [Google Scholar] [CrossRef]
- Xiong, M.-X.; Xiong, D.-X.; Liew, J.Y.R. Axial performance of short concrete filled steel tubes with high- and ultra-high- strength materials. Eng. Struct. 2017, 136, 494–510. [Google Scholar] [CrossRef]
- Xiong, M.-X.; Xiong, D.-X.; Liew, J.R. Behaviour of steel tubular members infilled with ultra high strength concrete. J. Constr. Steel Res. 2017, 138, 168–183. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, R.; Jia, L.-J.; Wang, J.-Y.; Gu, P. Structural behavior of UHPC filled steel tube columns under axial loading. Thin-Walled Struct. 2018, 130, 550–563. [Google Scholar] [CrossRef]
- Wang, F.; Young, B.; Gardner, L. Compressive testing and numerical modelling of concrete-filled double skin CHS with austenitic stainless steel outer tubes. Thin-Walled Struct. 2019, 141, 345–359. [Google Scholar] [CrossRef]
- Rodrigues, P.F.; da Vellasco, P.C.G.S.; de Lima, L.R.O.; da Silva, A.T.; Rodrigues, M.C.; Sarmanho, A.M.C. Experimental evaluation of composite tubular columns CFDST (Stainless steel-concrete-carbon steel). In Proceedings of the 9th International Conference on Advances in Steel Structures, ICASS 2018, Hong Kong, China, 5–7 December 2018. [Google Scholar] [CrossRef]
- Ji, J.; Yang, M.; Xu, Z.; Jiang, L.; Song, H. Experimental Study of H-Shaped Honeycombed Stub Columns with Rectangular Concrete-Filled Steel Tube Flanges Subjected to Axial Load. Adv. Civ. Eng. 2021, 2021, 6678623. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.; Yuan, B. Size effect of circular concrete-filled stainless steel tubular short columns under axial compression. Struct. Des. Tall Spec. Build. 2022, 32, e1983. [Google Scholar] [CrossRef]
- Gao, P.; Zhou, X.; Liu, J.; Lin, X.; Wang, X.; Chen, Y.F. Experimental assessment on the size effects of square concrete-filled steel tubular columns under axial compression. Eng. Struct. 2023, 281, 115706. [Google Scholar] [CrossRef]
- Khan, M.; Uy, B.; Tao, Z.; Mashiri, F. Behaviour and design of short high-strength steel welded box and concrete-filled tube (CFT) sections. Eng. Struct. 2017, 147, 458–472. [Google Scholar] [CrossRef]
- Li, G.-C.; Chen, B.-W.; Yang, Z.-J.; Liu, Y.-P.; Feng, Y.-H. Experimental and numerical behavior of eccentrically loaded square concrete-filled steel tubular long columns made of high-strength steel and concrete. Thin-Walled Struct. 2020, 159, 107289. [Google Scholar] [CrossRef]
- Li, G.-C.; Chen, B.-W.; Zhu, B.-W.; Yang, Z.-J.; Ge, H.-B.; Liu, Y.-P. Axially loaded square concrete-filled steel tubular long columns made of high-strength materials: Experimental investigation, analytical behavior and design. J. Build. Eng. 2022, 58, 104994. [Google Scholar] [CrossRef]
- e Silva, L.M.; Christoforo, A.L.; Carvalho, R.C. Calibration of Concrete Damaged Plasticity Model parameters for shear walls. Mater. Rio Jan. 2021, 26, e12944. [Google Scholar] [CrossRef]
- Tao, Z.; Wang, Z.-B.; Yu, Q. Finite element modelling of concrete-filled steel stub columns under axial compression. J. Constr. Steel Res. 2013, 89, 121–131. [Google Scholar] [CrossRef]
- de Oliveira, W.L.A.; De Nardin, S.; Debs, A.L.H.d.C.E. Dimensionamento de pilares preenchidos de seção circular submetidos à compressão simples, segundo a NBR 8800:2008 e Eurocode 4:2004: Comparação com resultados experimentais. Rem Rev. Esc. Minas 2009, 62, 73–85. [Google Scholar] [CrossRef]
- Ji, J.; Zeng, W.; Wang, R.; Ren, H.; Zhang, L.; Liu, Y.; Jiang, L.; He, L.; Lin, Y.; Yu, C. Bearing Capacity of Hollow GFRP Pipe-Concrete-High Strength Steel Tube Composite Long Columns Under Eccentrical Compression Load. Front. Mater. 2021, 8, 768877. [Google Scholar] [CrossRef]
- Ferreira, F.P.V.; Martins, C.H.; De Nardin, S. A parametric study of steel-concrete composite beams with hollow core slabs and concrete topping. Structures 2020, 28, 276–296. [Google Scholar] [CrossRef]
- Manigandan, R.; Kumar, M. Tests and numerical behavior of circular concrete-filled double skin steel tubular stub columns under eccentric loads. Struct. Eng. Mech. 2023, 88, 287–299. [Google Scholar] [CrossRef]
- Nguyen, T.-T.; Thai, H.-T.; Li, D.; Wang, J.; Uy, B.; Ngo, T. Behaviour and design of eccentrically loaded CFST columns with high strength materials and slender sections. J. Constr. Steel Res. 2021, 188, 107004. [Google Scholar] [CrossRef]
- Bai, W.; Li, Y.; Ji, J.; Liu, Y.; Zhang, L.; Wang, R.; Jiang, L.; He, L. Axial Compression Behavior of Symmetrical Full-Scale Concrete Filled Double Skin Steel Tube Stub Columns. Symmetry 2022, 14, 223. [Google Scholar] [CrossRef]
- İpek, S.; Güneyisi, E.M. Nonlinear finite element analysis of double skin composite columns subjected to axial loading. Arch. Civ. Mech. Eng. 2020, 20, 1–25. [Google Scholar] [CrossRef]
- AISC 360-22; Specification for Structural Steel Buildings. American Institute of Steel Construction: Chicago, IL, USA, 2022.
- CEN, Eurocode 4; Design of Composite Steel and Concrete Structures—Part 1.1: General Rules and Rules for Buildings. European Committee for Standardization: Brussels, Belgium, 2004.
- GB 50936; Technical Code for Concrete Filled Steel Tubular Structures (Chinese). China Standard Press: Beijing, China, 2014.
- NBR 8800:2024; Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edifícios. ABNT: São Paulo, Brazil, 2024.
- CEN/TC250/SC2, 1992-1-1 Eurocode 2; Design of Concrete Structures. Part 1: General Rules and Rules for Buildings, Design of Structural Elements. European Union: Brussels, Belgium, 1992.
- GB50010; Code for Design of Concrete Structures (Chinese). China Standard Press: Beijing, China, 2010.
- NBR 6118:2023; Projeto de Estruturas de Concreto—Procedimento, Rio de Janeiro. ABNT: São Paulo, Brazil, 2023.
- AS/NZS 2327; Composite Steel-Concrete Construction in Buildings. AS/NZS: Sydney, Australia, 2017.
- Uslu, F.; Taşkın, K. Experimental and Finite Element Method Investigation of Axial Load Carrying Capacity of Concrete Filled Circular Steel Tube Columns According to Different Slenderness Ratios. Int. J. Steel Struct. 2024, 24, 619–634. [Google Scholar] [CrossRef]
Reference | Tests | (MPa) | (MPa) | Geometry | |
---|---|---|---|---|---|
Furlong [24] | 8 | - | 294–420 | 21.4–35.6 | Circ. |
Furlong [24] | 5 | - | 336–492 | 21.4–43.1 | Rect. |
Gardner & Jacobson [25] | 7 | 1.70–4.10 | 363–605 | 21–34 | Circ. |
Knowles & Park [26] | 11 | - | 369–614 | 21.2–34.9 | Rect. |
Knowles & Park [26] | 6 | - | 324 | 39.9 | Rect. |
Bridge et al. [27] | 22 | 0.86–2.82 | 185.7–363.3 | 47.5 | Rect. |
Schneider & Alostaz [28] | 3 | - | 285–537 | 23.8–28.5 | Circ. |
Schneider & Alostaz [28] | 11 | - | 312–430 | 23.8–30.5 | Rect. |
O’Shea & Bridge [29] | 15 | 0.86–2.82 | 185.7–363.3 | 38.2–108 | Rect. |
Uy [30] | 21 | 5 | 750 | 0–32 | Rect. |
Han [31] | 24 | 2.8–7.6 | 198–228 | 59.3 1 | Rect. |
Sakino et al. [32] | 114 | 2.96–9.45 | 262–835 | 25–91.1 | Circ./Rect. |
Zeghiche & Chaoui [33] | 15 | 4.96–5.20 | 270–283 | 40–102 | Circ. |
Nardin & El Debs [34] | 6 | 3.20–4.85 | 329.1–355 | 47.7–59.3 | Circ./Rect. |
Gupta et al. [35] | 72 | 1.87–2.89 | 360 | 25.1–38.3 | Circ. |
Dabaon et al. [2] | 15 | 2.0 | 285 | 34.8–61.9 | Rect. |
Oliveira et al. [21] | 32 | 3.35–6.0 | 287.33 | 32.7–105.5 | Circ. |
Uenaka et al. [36] | 12 | 0.9–2.14 | 221–308 | 18.7 | Circ. 2 |
Han et al. [37] | 80 | 3.62–3.72 | 319.6–380.6 | 60 | Various 2 |
Zhao et al. [38] | 9 | 1.7–6.0 | 394–454 | 63.4 | Circ. |
Liew & Xiong [39] | 12 | 3.54–9.69 | 377–428 | 165–176 | Circ. |
Portolés et al. [40] | 6 | 6.0 | 394–494 | 37.7–120.5 | Circ. |
Tao et al. [41] | 13 | 3.6–8.0 | 321–372 | 42–81.8 | Circ. |
Tao et al. [41] | 11 | 3.6–10.0 | 355–521 | 40.4–81.8 | Rect. |
Liew et al. [5] | 27 | 3.6–16.0 | 374–779 | 51.6–193.3 | Circ. |
Xiong et al. [42] | 18 | 3.6–10.0 | 300–428 | 51.6–193.3 | Circ. |
Xiong et al. [43] | 2 | 10.0–16.0 | 374–412 | 180–186 | Circ. |
Chen et al. [44] | 12 | 2.09–8.03 | 251.8–371.6 | 59.0–130.8 | Circ./Rect. |
Wang et al. [45] | 2 | 2.77–5.50 | 375–419 | 30.1 | Circ. |
Rodrigues et al. [46] | 23 | 2.86–2.94 | 276–300 | 40.5–115.6 | Circ. 2 |
Ji et al. [47] | 16 | 1.7–3.8 | 269–286 | 49.5–65.6 | Rect. 3 |
Ren et al. [19] | 18 | 1.25–11.87 | 242–496 | 40–70.9 | Circ. |
Liu et al. [48] | 11 | 4.0–6.0 | 254–290 | 24.8 | Rounded |
Gao et al. [49] | 8 | 3.68–20.19 | 261–279 | 59.02 1 | Rect. |
Range of values | 677 | 0.86–20.19 | 185.7–780 | 18.7–193.3 |
10°–56° | 0.1 | 1.16 | 0.667 | 0.0001 |
Code | (MPa) |
---|---|
AISC 360 [62] | |
Eurocode 2 [66] | |
GB50010 [67] | According to Table 5. |
NBR 6118 [68] |
C40 | C45 | C50 | C55 | C60 | C65 | C70 | C75 | C80 |
---|---|---|---|---|---|---|---|---|
32.5 | 33.5 | 34.5 | 35.5 | 36.0 | 36.5 | 37.0 | 37.5 | 38.0 |
Code | (MPa) | (MPa) | (Circ.) | (Rect.) | Confinement |
---|---|---|---|---|---|
AISC 360 [62] | 525 | 100 | - | ||
Eurocode 4 [63] | 460 | 50 | - | ||
GB 50936 [64] | 420 | 80 | |||
NBR 8800 [65] | 460 | - |
ID | Geom. | (MPa) | (MPa) | D/B (mm) | H (mm) | t (mm) | D/t | (kN) | |
---|---|---|---|---|---|---|---|---|---|
C1 | Circ. | 58.7 | 287.3 | 114.3 | 342.9 | 3.35 | 0.63 | 34.1 | 952.0 |
C2 | Circ. | 58.7 | 287.3 | 114.3 | 342.9 | 6.0 | 1.22 | 19.1 | 1329.1 |
C3 | Circ. | 88.8 | 287.3 | 114.3 | 342.9 | 6.0 | 0.8 | 19.1 | 1496.0 |
C4 | Circ. | 105.5 | 287.3 | 114.3 | 342.9 | 6.0 | 0.68 | 19.1 | 1683.4 |
R1 | Rect. | 50.7 | 228 | 100 × 100 | 300 | 2.86 | 0.7 | 35.0 | 780.0 |
R2 | Rect. | 50.7 | 228 | 90 × 70 | 270 | 2.86 | 0.93 | 24.5 | 565.0 |
R3 | Rect. | 50.7 | 228 | 150 × 135 | 450 | 2.86 | 0.5 | 47.2 | 1380.0 |
R4 | Rect. | 50.7 | 228 | 140 × 80 | 420 | 2.86 | 0.7 | 28.0 | 810.0 |
ID | Numerical (kN) | Experimental | EC4 | AISC 360 | GB 50936 | NBR 8800 |
---|---|---|---|---|---|---|
C1 | 957.6 | 1.006 | 1.087 | 0.880 | 1.144 | 0.880 |
C2 | 1344.4 | 1.012 | 1.005 | 0.777 | 0.943 | 0.777 |
C3 | 1547.5 | 1.034 | 1.023 | 0.827 | 1.055 | 0.827 |
C4 | 1686.4 | 1.002 | 1.016 | 0.836 | 1.089 | 0.836 |
R1 | 713.2 | 0.914 | 0.987 | 0.892 | 1.061 | 0.795 |
R2 | 512.0 | 0.906 | 0.929 | 0.849 | 0.962 | 0.711 |
R3 | 1250.1 | 0.906 | 1.048 | 0.934 | 1.149 | 0.803 |
R4 | 742.9 | 0.917 | 1.057 | 0.955 | 1.088 | 0.684 |
Mean error | 0.962 | 1.019 | 0.869 | 1.061 | 0.789 | |
Mean error (%) | 3.79% | 1.90% | 13.1% | 6.10% | 21.1% | |
Standard deviation | 5.57% | 4.82% | 5.85% | 7.55% | 6.48% | |
CV (%) | 5.80% | 4.73% | 6.74% | 7.11% | 8.22% |
ID | EC4 | AISC 360 | GB 50936 | NBR 8800 |
---|---|---|---|---|
C1 | 1.029 | 0.995 | 0.992 | 0.995 |
C2 | 1.007 | 0.950 | 0.996 | 0.950 |
C3 | 0.989 | 0.975 | 1.004 | 0.975 |
C4 | 0.968 | 0.959 | 0.974 | 0.959 |
R1 | 0.937 | 0.960 | 0.912 | 1.002 |
R2 | 0.945 | 0.977 | 0.914 | 0.916 |
R3 | 0.949 | 0.996 | 0.924 | 0.961 |
R4 | 1.182 | 1.028 | 0.935 | 0.862 |
Mean error | 1.001 | 0.980 | 0.956 | 0.953 |
Mean error (%) | 0.1% | 2.0% | 4.4% | 4.7% |
Standard deviation | 8.0% | 2.6% | 3.9% | 4.5% |
CV (%) | 8.0% | 2.6% | 4.1% | 4.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossato, L.A.; Rossi, A.; Martins, C.H.; Gidrão, G.d.M.S.; Silvestro, L.; Bosse, R.M. An Assessment of the Bearing Capacity of High-Strength-Concrete-Filled Steel Tubular Columns Through Finite Element Analysis. Eng 2024, 5, 2978-2998. https://doi.org/10.3390/eng5040155
Rossato LA, Rossi A, Martins CH, Gidrão GdMS, Silvestro L, Bosse RM. An Assessment of the Bearing Capacity of High-Strength-Concrete-Filled Steel Tubular Columns Through Finite Element Analysis. Eng. 2024; 5(4):2978-2998. https://doi.org/10.3390/eng5040155
Chicago/Turabian StyleRossato, Leonardo André, Alexandre Rossi, Carlos Humberto Martins, Gustavo de Miranda Saleme Gidrão, Laura Silvestro, and Rúbia Mara Bosse. 2024. "An Assessment of the Bearing Capacity of High-Strength-Concrete-Filled Steel Tubular Columns Through Finite Element Analysis" Eng 5, no. 4: 2978-2998. https://doi.org/10.3390/eng5040155
APA StyleRossato, L. A., Rossi, A., Martins, C. H., Gidrão, G. d. M. S., Silvestro, L., & Bosse, R. M. (2024). An Assessment of the Bearing Capacity of High-Strength-Concrete-Filled Steel Tubular Columns Through Finite Element Analysis. Eng, 5(4), 2978-2998. https://doi.org/10.3390/eng5040155