Influence of Limestone Dust on PV Panel Efficiency in a Small Solar Park in Bulgaria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Background
2.2. Experimental Set-Up
2.3. Experimental Procedure
3. Results
3.1. Impact of Rainfall on Cleaning Efficiency
3.2. Influence of Wind Speed on Cleaning Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Senkpiel, C.; Dobbins, A.; Kockel, C.; Steinbach, J.; Fahl, U.; Wille, F.; Globisch, J.; Wassermann, S.; Droste-Franke, B.; Hauser, W.; et al. Integrating Methods and Empirical Findings from Social and Behavioural Sciences into Energy System Models—Motivation and Possible Approaches. Energies 2020, 13, 4951. [Google Scholar] [CrossRef]
- Renewable Energy Market Overview in Bulgaria 2023–2027. Available online: https://www.reportlinker.com (accessed on 1 April 2024).
- Global EV Outlook 2019. Scaling up the Transition to Electric Mobility. Available online: https://www.iea.org/reports/global-ev-outlook-2019 (accessed on 2 April 2024).
- Ingelson, A.; Quevedo, T.C. Chapter 13—Reducing CO2 emissions through carbon capture use and storage and carbon capture and storage in Mexico and Alberta, Canada: Addressing the legal and regulatory barriers. In Carbon Capture and Storage in International Energy Policy and Law; de Medeiros Costa, H.K., Arlota, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 247–261. [Google Scholar]
- Zlatov, N.; Iliev, I.; Terziev, A.; Kamburova, V. Influence of climatic data and degradation factor on the efficiency of the Photovoltaic modules. In Proceedings of the 15th International Workshop on Research and Education in Mechatronics REM, Bochum, Germany, 9–11 September 2014; pp. 1–5. [Google Scholar]
- Middelhauve, L.; Terrier, C.; Maréchal, F. Decomposition Strategy for Districts as Renewable Energy Hubs. IEEE Open Access J. Power Energy 2022, 9, 287–297. [Google Scholar] [CrossRef]
- Strielkowski, W.; Civín, L.; Tarkhanova, E.; Tvaronavičienė, M.; Petrenko, Y. Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review. Energies 2021, 14, 8240. [Google Scholar] [CrossRef]
- Ucal, M.; Xydis, G. Multidirectional relationship between energy resources, climate changes and sustainable development: Technoeconomic analysis. Sustain. Cities Soc. 2020, 60, 102210. [Google Scholar] [CrossRef]
- Eurostat. Shedding Light on Energy in the EU—2023 Edition. 2023. Available online: https://ec.europa.eu/eurostat/web/interactive-publications/energy-2023 (accessed on 2 April 2024).
- Javed, W.; Wubulikasimu, Y.; Figgis, B.; Guo, B. Characterization of dust accumulated on photovoltaic panels in Doha, Qatar. Sol. Energy 2017, 142, 123–135. [Google Scholar] [CrossRef]
- Darwish, Z.A.; Kazem, H.A.; Sopian, K.; Alghoul, M.; Alawadhi, H. Experimental investigation of dust pollutants and the impact of environmental parameters on PV performance: An experimental study. Environ. Dev. Sustain. 2018, 20, 155–174. [Google Scholar] [CrossRef]
- Alquthami, T.; Menoufi, K. Soiling of photovoltaic modules: Comparing between two distinct locations within the framework of developing the photovoltaic soiling index (PVSI). Sustainability 2019, 11, 4697. [Google Scholar] [CrossRef]
- Zaihidee, F.M.; Mekhilef, S.; Seyedmahmoudian, M.; Horan, B.; Seyedmahmoudian, M. Dust as an unalterable deteriorative factor affecting PV panel’s efficiency: Why and how. Renew. Sustain. Energy Rev. 2016, 65, 1267–1278. [Google Scholar] [CrossRef]
- Borah, P.; Micheli, L.; Sarmah, N. Analysis of Soiling Loss in Photovoltaic Modules: A Review of the Impact of Atmospheric Parameters, Soil Properties, Approaches. Sustainability 2023, 15, 16669. [Google Scholar] [CrossRef]
- Khodakaram-Tafti, A.; Yaghoubi, M. Experimental study on the effect of dust deposition on photovoltaic performance at various tilts in semi-arid environment. Sustain. Energy Technol. Assess. 2020, 42, 100822. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, D.; Liu, Y.; Dong, Y.; Liu, J. Research on Photovoltaic Performance Reduction Due to Dust Deposition: Modelling and Experimental Approach. J. Therm. Sci. 2019, 6, 1186–1194. [Google Scholar] [CrossRef]
- Fan, S.; Wang, Y.; Cao, S.; Sun, T.; Liu, P. A novel method for analyzing the effect of dust accumulation on energy efficiency loss in photovoltaic (PV) system. Energy 2021, 234, 121112. [Google Scholar] [CrossRef]
- Ilse, K.; Figgis, B.; Khan, M.Z.; Naumann, V.; Hagendorf, C. Dew as a Detrimental Influencing Factor for Soiling of PV Modules. IEEE J. Photovolt. 2019, 9, 287–294. [Google Scholar] [CrossRef]
- Chiteka, K.; Arora, R.; Sridhara, S.N.; Enweremadu, C.C. Influence of irradiance incidence angle and installation configuration on the deposition of dust and dust-shading of a photovoltaic array. Energy 2021, 216, 119289. [Google Scholar] [CrossRef]
- Wu, S.-L.; Chen, H.-C.; Peng, K.-J. Quantification of Dust Accumulation on Solar Panels Using the Contact-Characteristics-Based Discrete Element Method. Energies 2023, 16, 2580. [Google Scholar] [CrossRef]
- Shao, Y.; Zhang, C.; Xing, L.; Sun, H.; Zhao, Q.; Zhang, L. A new dust detection method for photovoltaic panel surface based on Pytorch and its economic benefit analysis. Energy AI 2024, 16, 100349. [Google Scholar] [CrossRef]
- Wan, L.; Zhao, L.; Xu, W.; Guo, F.; Jiang, X. Dust deposition on the photovoltaic panel: A comprehensive survey on mechanisms, effects, mathematical modeling, cleaning methods, and monitoring systems. Solar Energy 2024, 268, 112300. [Google Scholar] [CrossRef]
- Güngör, O.; Kahveci, H.; Gökçe, H.S. The effect of various industrial dust particles on the performance of photovoltaic panels in Turkey. Environ. Sci. Pollut. Res. 2023, 30, 15128–15144. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Ghosh, A.; Mallick, T.K.; Chanda, C.K.; Saha, H.; Bose, I.; Jana, J.; Sengupta, S. Model Based Generation Prediction of SPV Power Plant Due to Weather Stressed Soiling. Energies 2021, 14, 5305. [Google Scholar] [CrossRef]
- Figgis, B.W. Investigation of PV Soiling and Condensation in Desert Environments via Outdoor Microscopy. Ph.D. Thesis, ICube Laboratory, Université de Strasbourg, Strasbourg, France, 2018. [Google Scholar]
- Ding, M.; Xu, Z.; Wang, W.; Wang, X.; Song, Y.; Chen, D. A review on China’s large-scale PV integration: Progress, challenges and recommendations. Renew. Sustain. Energy Rev. 2016, 53, 639–652. [Google Scholar] [CrossRef]
- Conceição, R.; Silva, H.G.; Mirão, J.; Collares-Pereira, M. Organic Soiling: The Role of Pollen in PV Module Performance Degradation. Energies 2018, 11, 294. [Google Scholar] [CrossRef]
- Elamim, A.; Sarikh, S.; Hartiti, B.; Benazzouz, A.; Elhamaoui, S.; Ghennioui, A. Experimental studies of dust accumulation and its effects on the performance of solar PV systems in Mediterranean climate. Energy Rep. 2024, 11, 2346–2359. [Google Scholar] [CrossRef]
- Elminshawy, N.A.S.; Ahmed, A.; Osama, A.; Kabeel, A.E.; Elbaksawi, O. The potential of optimized floating photovoltaic system for energy production in the Northern Lakes of Egypt. Eng. Anal. Bound. Elem. 2024, 61, 226–246. [Google Scholar] [CrossRef]
- Kayri, İ.; Bayar, M.T. A new approach to determine the long-term effect of efficiency losses due to different dust types accumulation on PV modules with artificial neural networks. J. Clean. Prod. 2024, 434, 140282. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, Y.; Ji, J.; He, W.; Hu, Z.; Xuan, Q. Yearly photoelectric/thermal and economic performance comparison between CPV and FPV dual-source heat pump systems in different regions. Energy 2024, 289, 129881. [Google Scholar] [CrossRef]
- Yordanov, K.; Hadzhidimov, I.; Zlateva, P. Electronic measuring system design for photovoltaic panels analysis. E3S Web Conf. 2021, 327, 02008. [Google Scholar] [CrossRef]
- Penkova, N.Y.; Krumov, K.S.; Hristov, P.V. Energy gains at daily periodic changes of the azimuths of PV modules in north-east Bulgaria. IOP Conf. Ser. Earth Environ. Sci. 2023, 1234, 012003. [Google Scholar] [CrossRef]
- Petrov, V.; Yordanov, K. Application of Hybrid Systems for Sustainable Energy Consumption. IOP Conf. Ser. Earth Environ. Sci. 2024, 1380, 012009. [Google Scholar] [CrossRef]
- Beloev, H.I.; Iliev, I.K.; Ilieva, D.I.; Terziev, A.K.; Ivanov, M. Green Energy Potential in University Building’s Roofs, Assessed Through the Possibility for Installation of Commercial Photovoltaic Systems. IOP Conf. Ser. Earth Environ. Sci. 2023, 1128, 012005. [Google Scholar] [CrossRef]
- Stoyanov, I.; Iliev, T.; Mihaylov, G.; Ivanova, E. Synthesis and design of virtual measurement system for investigation on photovoltaic modules. In Proceedings of the 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 23–25 March 2017; pp. 915–918. [Google Scholar]
- Khan, M.Z.; Manzar, A.; Willers, G.; Naumann, V.; Hagendorf, C.; Gottschalg, R.; Ilse, K. Particle-Size-Dependent Analysis of the Impact of Temperature, Humidity, and Tilt Angle on Soiling. IEEE J. Photovolt. 2023, 13, 442–449. [Google Scholar] [CrossRef]
- Figgis, B.; Goossens, D.; Guo, B.; Ilse, K. Effect of tilt angle on soiling in perpendicular wind. Sol. Energy 2019, 194, 294–301. [Google Scholar] [CrossRef]
- Jiang, Y.; Lu, L. Experimentally Investigating the Effect of Temperature Differences in the Particle Deposition Process on Solar Photovoltaic (PV) Modules. Sustainability 2016, 8, 1091. [Google Scholar] [CrossRef]
- Alshahrani, A.; Omer, S.; Su, Y.; Mohamed, E.; Alotaibi, S. The Technical Challenges Facing the Integration of Small-Scale and Large-scale PV Systems into the Grid: A Critical Review. Electronics 2019, 8, 1443. [Google Scholar] [CrossRef]
- De, S.; Shiradkar, N.; Kottantharayil, A. Improved Cleaning Event Detection Methodology Including Partial Cleaning by Wind Applied to Different PV-SCADA Datasets for Soiling Loss Estimation. IEEE J. Photovolt. 2024, 14, 344–353. [Google Scholar] [CrossRef]
- Costa, S.C.S.; Kazmerski, L.L.; Diniz, A.S.A.C. Estimate of soiling rates based on soiling monitoring station and PV system data: Case study for equatorial-climate Brazil. IEEE J. Photovolt. 2021, 11, 461–468. [Google Scholar] [CrossRef]
- Micheli, L.; Fernández, E.F.; Almonacid, F. Photovoltaic cleaning optimization through the analysis of historical time series of environmental parameters. Sol. Energy 2021, 227, 645–654. [Google Scholar] [CrossRef]
- Sakarapunthip, N.; Chenvidhya, D.; Chuangchote, S.; Chenvidhya, T. Dust Accumulation and Its Effect on PV Performance in Tropical Climate and Rice Farm Environment. In Proceedings of the IEEE 48th Photovoltaic Specialists Conference (PVSC), Fort Lauderdale, FL, USA, 20–25 June 2021; pp. 1848–1854. [Google Scholar]
- Khan, M.Z.; Manzar, A.; Hagendorf, C.; Naumann, V.; Gottschalg, R.; Ilse, K. Particle-size dependent parameter studies for laboratory soiling tests: Influence of temperature, relative humidity and tilt angle. In Proceedings of the 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, AB, Canada, 15 June–21 August 2020; pp. 500–1501. [Google Scholar]
- Semba, T.; Shimada, T.; Shirasawa, K.Y.K.; Takato, H. Corrosion of the Glass and Formation of Lead Compounds in the Metallization by High Temperature and High Humidity Test of Crystalline Silicon PV Module. In Proceedings of the IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa, HI, USA, 10–15 June 2018; pp. 1333–1335. [Google Scholar]
- Aïssa, B.; Isaifan, R.J.; Figgis, B.W.; Abdallah, A.A.; Bachour, D.; Perez-Astudillo, D.; Sanfilippo, A.; Lopez-Garcia, J.; Bermudez Benito, V. A Comprehensive Review of a Decade of Field PV Soiling Assessment in QEERI’s Outdoor Test Facility in Qatar: Learned Lessons and Recommendations. Energies 2023, 16, 5224. [Google Scholar] [CrossRef]
- Dovramadjiev, T.; Dobreva, D.; Murzova, T.; Murzova, M.; Markov, V.; Iliev, I.; Cankova, K.; Jecheva, G.; Staneva, G. Interaction Between Artificial Intelligence, 2D and 3D Open Source Software, and Additive Technologies for the Needs of Design Practice. In Proceedings of World Conference on Information Systems for Business Management. ISBM 2023. Lecture Notes in Networks and Systems; Iglesias, A., Shin, J., Patel, B., Joshi, A., Eds.; Springer: Singapore, 2024; Volume 834. [Google Scholar] [CrossRef]
- Jaszczur, M.; Koshti, A.; Nawrot, W.; Sędor, P. An investigation of the dust accumulation on photovoltaic panels. Environ. Sci. Pollut. Res. 2020, 27, 2001–2014. [Google Scholar] [CrossRef] [PubMed]
- Alnaser, N.W.; Dakhel, A.A.; Al Othman, M.J.; Batarseh, I.; Lee, J.K.; Najmaii, S.; Alnaser, W.E. Dust Accumulation Study on the Bapco 05 MW p PVProject at University of Bahrain. Int. J. Power Energy Syst. 2015, 2, 35–54. [Google Scholar]
- Javed, W.; Guo, B.; Figgis, B.; Aïssa, B. Dust potency in the context of solar photovoltaic (PV) soiling loss. Sol. Energy 2021, 220, 1040–1052. [Google Scholar] [CrossRef]
- Mastekbayeva, G.; Kumar, S. Effect of dust on the transmittance of low-density polyethylene glazing in a tropical climate. Sol. Energy 2000, 68, 135–141. [Google Scholar] [CrossRef]
- Alghamdi, A.S.; Bahaj, A.S.; Blunden, L.S.; Wu, Y. Dust Removal from Solar PV Modules by Automated Cleaning Systems. Energies 2019, 12, 2923. [Google Scholar] [CrossRef]
- Engelbrecht, J.P.; Stenchikov, G.; Jish Prakash, P.; Lersch, T.; Anisimov, A.; Shevchenko, I. Physical and chemical properties of deposited airborne particulates over the Arabian Red Sea coastal plain. Atmos. Chem. Phys. 2017, 17, 11467–11490. [Google Scholar] [CrossRef]
- Parrott, B.; Zanini, P.C.; Shehri, A.; Kotsovos, K.; Gereige, I. Automated, robotic dry-cleaning of solar panels in Thuwal, Saudi Arabia using a silicone rubber brush. Sol. Energy 2018, 171, 526–533. [Google Scholar] [CrossRef]
- Ramli, M.A.; Prasetyono, E.; Wicaksana, R.W.; Windarko, N.A.; Sedraoui, K.; Al-Turki, Y.A. On the investigation of photovoltaic output power reduction due to dust accumulation and weather conditions. Renew. Energy 2016, 99, 836–844. [Google Scholar] [CrossRef]
- Alghamdi, A.; Bahaj, A.; Wu, Y. Assessment of Large Scale Photovoltaic Power Generation from Carport Canopies. Energies 2017, 10, 686. [Google Scholar] [CrossRef]
- Silverman, T.J.; Mansfield, L.; Repins, I.; Kurtz, S. Damage in monolithic thin-film photovoltaic modules due to partial shade. IEEE J. Photovolt. 2016, 6, 1333–1338. [Google Scholar] [CrossRef]
- Zhi, J.; Zhang, L. Applied Surface Science Durable superhydrophobic surface with highly antire fl ective and self- cleaning properties for the glass covers of solar cells. Appl. Surf. Sci. 2018, 454, 239–248. [Google Scholar] [CrossRef]
- Younis, A.; Onsa, M. A brief summary of cleaning operations and their effect on the photovoltaic performance in Africa and the Middle East. Energy Rep. 2022, 8, 2334–2347. [Google Scholar] [CrossRef]
- Altıntaş, M.; Arslan, S. The Study of Dust Removal Using Electrostatic Cleaning System for Solar Panels. Sustainability 2021, 13, 9454. [Google Scholar] [CrossRef]
- Naraghi, M.H.; Atefi, E. Optimum Solar Panel Orientation and Performance: A Climatic Data-Driven Metaheuristic Approach. Energies 2022, 15, 624. [Google Scholar] [CrossRef]
- Nezamisavojbolaghi, M.; Davodian, E.; Bouich, A.; Tlemçani, M.; Mesbahi, O.; Janeiro, F.M. The Impact of Dust Deposition on PV Panels’ Efficiency and Mitigation Solutions: Review Article. Energies 2023, 16, 8022. [Google Scholar] [CrossRef]
- Kadikyanov, G.; Kolev, Z.; Kadirova, S.; Staneva, G.; Lyubenov, D. Analytical Determination of Cars CO2 Emissions with Different Types of Climate Control Systems. AIP Conf. Proc. 2021, 2439, 020005. [Google Scholar]
- Abderrezek, M.; Fathi, M. Experimental study of the dust effect on photovoltaic panels’ energy yield. Sol. Energy 2017, 142, 308–320. [Google Scholar] [CrossRef]
- StringMeteo. Weather Statistics Archive for Pazardzhik. Available online: https://www.stringmeteo.com/stations/stats_arch_av.php#pazardzhik (accessed on 19 November 2024).
- Hachicha, A.A.; Al-Sawafta, I.; Said, Z. Impact of Dust on the Performance of Solar Photovoltaic (PV) Systems under United Arab Emirates Weather Conditions. Renew. Energy 2019, 141, 287–297. [Google Scholar] [CrossRef]
- Rusănescu, C.O.; Rusănescu, M.; Istrate, I.A.; Constantin, G.A.; Begea, M. The Effect of Dust Deposition on the Performance of Photovoltaic Panels. Energies 2023, 16, 6794. [Google Scholar] [CrossRef]
- Alfaris, F.E. A Sensorless Intelligent System to Detect Dust on PV Panels for Optimized Cleaning Units. Energies 2023, 16, 1287. [Google Scholar] [CrossRef]
- Kazem, A.A.; Chaichan, M.T.; Kazem, H.A. Dust Effect on Photovoltaic Utilization in Iraq: Review Article. Renew. Sustain. Energy Rev. 2014, 37, 734–749. [Google Scholar] [CrossRef]
- Fountoukis, C.; Figgis, B.; Ackermann, L.; Ayoub, M.A. Effects of Atmospheric Dust Deposition on Solar PV Energy Production in a Desert Environment. Sol. Energy 2018, 164, 94–100. [Google Scholar] [CrossRef]
- Mani, M.; Pillai, R. Impact of Dust on Solar Photovoltaic (PV) Performance: Research Status, Challenges and Recommendations. Renew. Sustain. Energy Rev. 2010, 14, 3124–3131. [Google Scholar] [CrossRef]
- Saini, R.K.; Saini, D.K.; Gupta, R.; Verma, P.; Dwivedi, R.; Kumar, A.; Chauhan, D.; Kumar, S. Effects of Dust on the Performance of Solar Panels—A Review Update from 2015–2020. Energy Environ. 2023, 34, 2110–2162. [Google Scholar] [CrossRef]
PV Module Electricity Performance Parameters, “Cellevia Power” | ||
---|---|---|
Model: | CL-SM20M | CL-SM20P |
Silicon solar cell type: | Monocrystalline | Polycrystalline |
Picture | ||
No. of cells and connections | 36 (4 × 9) | 36 (2 × 18) |
Maximum power (Pmax) | 20 W | 20 W |
Voltage at Pmax (Vmp) | 18.6 V | 18.2 V |
Current at Pmax (Imp) | 1.08 A | 1.12 A |
Open-circuit voltage (Voc) | 22.9 V | 22.6 V |
Short-circuit current (Isc) | 1.12 A | 1.18 A |
Temperature coefficient of Voc | −(0.40 ± 0.05)%/°C | |
Temperature coefficient of Isc | (0.065 ± 0.01)%/°C | |
Temperature coefficient of power | −(0.5 ± 0.05)%/°C | |
NOCT (Air 20 °C; Sun 0.8 kW/m2 wind 1 m/s) | 47 ± 2 °C | |
Max system voltage: | 600 V DC | |
Temperature range: | −40 °C to +85 °C | |
Power tolerance | +3% | |
Module dimension | 435 mm × 356 mm × 25 mm | |
Weight | 2.1 kg |
Sensor | Model | Range | Accuracy/Uncertainty |
---|---|---|---|
Cup anemometer | NRG #40C | 1 up to 96 m/s | ±0.14 m/s |
Pyronometer | NRG R2 | −200 up to 4000 W/m2 | <2° |
Date | SR, W/m2 | P-Mono (Wh/Day) | Specific Efficiency_Mono | P-Poly (Wh/Day) | Specific Efficiency_Poly |
---|---|---|---|---|---|
16 Sept. 2021 | 408.40 | 7764.12 | 19.01 | 7187.40 | 17.60 |
21 Sept. 2021 | 379.22 | 7111.39 | 18.75 | 6584.61 | 17.36 |
26 Sept. 2021 | 380.52 | 7072.74 | 18.59 | 6555.65 | 17.23 |
1 Oct. 2021 | 284.61 | 4875.31 | 17.13 | 4534.99 | 15.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zlateva, P.; Terziev, A.; Yordanov, K.; Ivanov, M.; Stankov, B. Influence of Limestone Dust on PV Panel Efficiency in a Small Solar Park in Bulgaria. Eng 2025, 6, 10. https://doi.org/10.3390/eng6010010
Zlateva P, Terziev A, Yordanov K, Ivanov M, Stankov B. Influence of Limestone Dust on PV Panel Efficiency in a Small Solar Park in Bulgaria. Eng. 2025; 6(1):10. https://doi.org/10.3390/eng6010010
Chicago/Turabian StyleZlateva, Penka, Angel Terziev, Krastin Yordanov, Martin Ivanov, and Borislav Stankov. 2025. "Influence of Limestone Dust on PV Panel Efficiency in a Small Solar Park in Bulgaria" Eng 6, no. 1: 10. https://doi.org/10.3390/eng6010010
APA StyleZlateva, P., Terziev, A., Yordanov, K., Ivanov, M., & Stankov, B. (2025). Influence of Limestone Dust on PV Panel Efficiency in a Small Solar Park in Bulgaria. Eng, 6(1), 10. https://doi.org/10.3390/eng6010010