Sensors on Flapping Wings (SOFWs) Using Complementary Metal–Oxide–Semiconductor (CMOS) MEMS Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. CMOS MEMS Flow Sensor Measurement and Calibration in a Small Wind Tunnel
2.2. The MEMS SOFWs in a Medium-Sized Wind Tunnel
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pornsinsirirak, T.N.; Tai, Y.C.; Nassef, H.; Ho, C.M. Titanium-alloy MEMS wing technology for a micro aerial vehicle application. Sens. Actuators A Phys. 2001, 89, 95–103. [Google Scholar] [CrossRef]
- De Croon, G.C.A.; Groen, M.A.; de Wagter, C.; Remes, B.; Ruijsink, R.; van Oudheusden, B.W. Design, aerodynamics and autonomy of the DelFly. Bioinspir. Biomim. 2012, 7, 025003. [Google Scholar] [CrossRef] [PubMed]
- Keennon, M.; Klingebiel, K.; Won, H.; Andriukov, A. Tailless flapping wing propulsion and control development for the nano hummingbird micro air vehicle. In Proceedings of the American Helicopter Society Future Vertical Lift Aircraft Design Conference 2012, San Francisco, CA, USA, 18–20 January 2012; pp. 1–24. [Google Scholar]
- Phan, H.V.; Park, H.C. Mechanisms of collision recovery in flying beetles and flapping-wing robots. Science 2020, 370, 1214–1219. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Young, J.; Lai, J. Reynolds number, thickness and camber effects on flapping airfoil propulsion. J. Fluids Struct. 2011, 27, 145–160. [Google Scholar] [CrossRef]
- Ismail, N.; Zulkifli, A.; Abdullah, M.; Basri, M.H.; Abdullah, N.S. Optimization of aerodynamic efficiency for twist morphing MAV wing. Chin. J. Aeronaut. 2014, 27, 475–487. [Google Scholar] [CrossRef]
- Flint, T.J.; Jeremy, M.C.; New, T.H.; Ho, W.H. Computational study of a pitching bio-inspired corrugated airfoil. Int. J. Heat Fluid Flow 2017, 65, 328–341. [Google Scholar] [CrossRef]
- Li, H.; Nabawy, M.R.A. Effect of stroke amplitude and wing platform on the aerodynamic performance of hovering flapping wing. Aerospace 2022, 9, 479. [Google Scholar] [CrossRef]
- Yang, L.J.; Esakki, B. Flapping Wing Vehicles: Numerical and Experimental Approach; CRC Press: Boca Raton, FL, USA, 2021; pp. 49–75. [Google Scholar]
- Ramasamy, M.; Leishman, J.G. Phase-locked particle image velocimetry measurements of a flapping wing. J. Aircr. 2006, 43, 1867–1875. [Google Scholar] [CrossRef]
- Rivera, M.K.; Aluie, H.; Ecke, R.E. The direct enstrophy cascade of two-dimensional soap film glows. Phys. Fluids 2014, 26, 055105. [Google Scholar] [CrossRef]
- Pong, K.C.; Ho, C.M.; Liu, J.; Tai, Y.C. Non-linear pressure distribution in uniform microchannels. Am. Soc. Mech. Eng. Fluids Eng. Div. 1994, 197, 51–56. [Google Scholar]
- Liu, J.; Tai, Y.C.; Ho, C.M. MEMS for pressure distribution studies of gaseous flows in microchannels. In Proceedings of the 8th IEEE MEMS 1995, Amsterdam, The Netherlands, 29 January–2 February 1995; pp. 209–215. [Google Scholar]
- Jiang, F.; Tai, Y.C.; Ho, C.M.; Karan, R.; Garstenauer, M. Theoretical and experimental studies of micromachined hot-wire anemometers. In Proceedings of the Technical Digest—International Electron Devices Meeting 1994, San Francisco, CA, USA, 11–14 December 1994; pp. 139–142. [Google Scholar]
- Pornsinsirirak, T.N.; Liger, M.; Tai, T.-C.; Ho, S.; Ho, C.-M. Flexible parylene-valved skin for adaptive flow control. In Proceedings of the 15th IEEE MEMS Conference, Las Vegas, NV, USA, 20–24 January 2002; pp. 101–104. [Google Scholar]
- Jiang, F.; Lee, G.B.; Tai, Y.C.; Ho, C.M. A flexible micromachine-based shear-stress sensor array and its application to separation-point detection. Sens. Actuators A Phys. 2000, 79, 194–203. [Google Scholar] [CrossRef]
- Lee, G.B.; Shih, C.; Tai, Y.C.; Tsao, T.; Ho, C.M. Robust vortex control of a delta wing using distributed MEMS actuators. J. Aircr. 2000, 37, 697–706. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, F.; Newbern, S.; Huang, A.; Ho, C.M.; Tai, Y.C. Flexible shear-stress sensor skin and its application to unmanned aerial vehicles. Sens. Actuators A Phys. 2003, 105, 321–329. [Google Scholar] [CrossRef]
- Javed, Y.; Mansoor, M.; Shah, I.A. A review of principles of MEMS pressure sensing with its aerospace applications. Sens. Rev. 2019, 39, 652–664. [Google Scholar] [CrossRef]
- Nguyen, N. Micromachined flow sensors—A review. Flow Meas. Instrum. 1997, 8, 7–16. [Google Scholar] [CrossRef]
- Dalola, S.; Cerimovic, S.; Kohl, F.; Beigelbeck, R.; Schalko, J.; Ferrari, V. MEMS thermal flow sensor with smart electronic interface circuit. IEEE Sens. J. 2012, 12, 3318–3328. [Google Scholar] [CrossRef]
- Wu, C.H.; Kang, D.; Chen, P.-H.; Tai, Y.C. MEMS thermal flow sensors. Sens. Actuators A Phys. 2016, 241, 135–144. [Google Scholar] [CrossRef]
- Ahmed, M.; Xu, W.; Mohamad, S.; Duan, M.; Lee, Y.K.; Bermak, A. Integrated CMOS-MEMS flow sensor with high sensitivity and large flow range. IEEE Sens. J. 2017, 17, 2318–2319. [Google Scholar] [CrossRef]
- Huang, L. Micromachined thermal time-of-flight flow sensors and their applications. Micromachines 2022, 13, 1729. [Google Scholar] [CrossRef]
- Xu, W.; Pan, L.; Gao, B.; Chiu, Y.; Xu, K.; Lee, Y.K. Systematic study of packaging designs on the performance of CMOS thermoresistive micro calorimetric flow sensors. J. Micromech. Microeng. 2017, 27, 085001. [Google Scholar] [CrossRef]
- Dumstorff, G.; Brauns, E.; Lang, W. Investigations into packaging technology for membrane-based thermal flow sensors. J. Sens. Sens. Syst. 2015, 4, 45–52. [Google Scholar] [CrossRef]
- Xu, W.; Gao, B.; Lee, Y.K.; Chiu, Y. Packaging effect on the flow separation of CMOS thermoresistive micro calorimetric flow sensors. In Proceedings of the IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) 2016, Sendai, Japan, 17–20 April 2016; pp. 62–65. [Google Scholar]
- Yang, L.J.; Tasupalli, C.; Wang, W.C.; Lee, C.Y.; Lee, C.Y.; Athikary, K.G.; Wu, J.X. Initial study of the onsite measurement of flow sensors on turbine blades (SOTB). Micromachines 2024, 15, 877. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.L.; Lu, S.S.; Chang, P.Z. Design and processing of integrated micro accelerometers using standard CMOS process. J. Chin. Inst. Eng. 1997, 20, 47–55. [Google Scholar] [CrossRef]
- Qu, H. CMOS MEMS fabrication technologies and devices. Micromachines 2016, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.J.; Waikhom, R.; Shih, H.Y.; Lee, Y.K. Foundry service of CMOS MEMS process and case study of flow sensors. Processes 2022, 10, 1280. [Google Scholar] [CrossRef]
- Yang, L.J.; Joseph, V.J.; Lo, Y.L.; Tang, W.T.; Esakki, B.; Kompala, S.; Veeranjaneyulu, P. Aerodynamic evaluation of flapping wings with leading-edge twisting. Biomimetics 2023, 8, 134. [Google Scholar] [CrossRef]
- Roskam, J. Airplane Flight Dynamics and Automatic Flight Control; Roskam Aviation and Engineering Corp.: Lawrence, KS, USA, 1979; pp. 69–78. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.-J.; Wang, W.-C.; Tasupalli, C.; Esakki, B.; Shaik, M.I. Sensors on Flapping Wings (SOFWs) Using Complementary Metal–Oxide–Semiconductor (CMOS) MEMS Technology. Eng 2025, 6, 15. https://doi.org/10.3390/eng6010015
Yang L-J, Wang W-C, Tasupalli C, Esakki B, Shaik MI. Sensors on Flapping Wings (SOFWs) Using Complementary Metal–Oxide–Semiconductor (CMOS) MEMS Technology. Eng. 2025; 6(1):15. https://doi.org/10.3390/eng6010015
Chicago/Turabian StyleYang, Lung-Jieh, Wei-Cheng Wang, Chandrashekhar Tasupalli, Balasubramanian Esakki, and Mahammed Inthiyaz Shaik. 2025. "Sensors on Flapping Wings (SOFWs) Using Complementary Metal–Oxide–Semiconductor (CMOS) MEMS Technology" Eng 6, no. 1: 15. https://doi.org/10.3390/eng6010015
APA StyleYang, L.-J., Wang, W.-C., Tasupalli, C., Esakki, B., & Shaik, M. I. (2025). Sensors on Flapping Wings (SOFWs) Using Complementary Metal–Oxide–Semiconductor (CMOS) MEMS Technology. Eng, 6(1), 15. https://doi.org/10.3390/eng6010015