Elucidating the Memory Effects of Magnetic Water Treatment via Precipitated Phase Changes of Calcium Carbonate
Abstract
:1. Introduction
Hypothesized Mechanisms of Magnetic Water Treatment
- Hydrogen Bonding and Water Structure: Magnetic fields can affect hydrogen bonding in water, altering the arrangement within water clusters and impacting its physical properties [41].
- Crystal Morphology and Nucleation: Magnetic treatment may modify nucleation processes and crystal structures, resulting in hydrophilic crystals that are less likely to adhere to surfaces [42].
- Magnetohydrodynamic Effects: Magnetic fields may influence fluid dynamics, affecting the aggregation or dispersion of colloidal particles [43].
- Zeta Potential Changes: Alternating magnetic fields can alter the zeta potential of colloidal particles, reducing the likelihood of scale formation [44].
2. Materials and Methods
2.1. Magnetic Treatment of Water and Solution
2.2. Calcium Carbonate Precipitation
2.3. Verification of Memory Effects
2.4. Characterization Instruments
3. Results
3.1. SEM Particle Characterization
3.2. XRD Characterization
3.3. DLS Results and Characterization
3.4. XRD Characterization for the Different Solution Samples
3.5. Memory Effect
4. Discussion
5. Conclusions
- i.
- In existing power plants and new technology power plants (such as ultrasupercritical coal, water gas shift reactors, etc.), as to how the process can be optimized, including life-cycle assessments [63];
- ii.
- Novel technologies such as Ocean thermal and sea-water air-conditioning systems, which rely heavily on mineralized sea water and are prone to scale formation, should be investigated;
- iii.
- Hydraulic systems that suffer from scaling effects should be optimized in future research to test the efficacy of magnetic fluid treatment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fawzy, S.; Osman, A.I.; Doran, J.; Rooney, D.W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 2020, 18, 2069–2094. [Google Scholar] [CrossRef]
- Ohya, H.; Suzuki, T.; Nakao, S. Integrated system for complete usage of components in seawater: A proposal of inorganic chemical combinat on seawater. Desalination 2001, 134, 29–36. [Google Scholar] [CrossRef]
- González, P.P.; Bautista-Capetillo, C.; Ruiz-Canales, A.; González-Trinidad, J.; Júnez-Ferreira, H.E.; Rodríguez, A.R.C.; Rovelo, C.O.R. Characterization of Scale Deposits in a Drinking Water Network in a Semi-Arid Region. Int. J. Environ. Res. Public Health 2022, 19, 3257. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, G.; Chao, Y.; Horner, O.; Alos-Ramos, O.; Hui, F.; Lédion, J.; Perrot, H. Application of the Fast Controlled Precipitation method to assess the scale-forming ability of raw river waters. Desalination 2012, 299, 89–95. [Google Scholar] [CrossRef]
- Tijing, L.D.; Lee, D.-H.; Kim, D.-W.; Cho, Y.I.; Kim, C.S. Effect of high-frequency electric fields on calcium carbonate scaling. Desalination 2011, 279, 47–53. [Google Scholar] [CrossRef]
- Osorio-Celestino, G.R.; Hernandez, M.; Solis-Ibarra, D.; Tehuacanero-Cuapa, S.; Rodríguez-Gómez, A.; Gómora-Figueroa, A.P. Influence of Calcium Scaling on Corrosion Behavior of Steel and Aluminum Alloys. ACS Omega 2020, 5, 17304–17313. [Google Scholar] [CrossRef]
- Amiri, M.; Moghadasi, J.; Jamialahmadi, M.; Shahri, M.P. The Study of Calcium Sulfate Scale Formation during Water Injection in Iranian Oil Fields at Different Pressures. Energy Sources Part A Recover. Util. Environ. Eff. 2013, 35, 648–658. [Google Scholar] [CrossRef]
- Cruz, C.; Cisternas, L.A.; Kraslawski, A. Scaling problems and control technologies in industrial operations: Technology assessment. Sep. Purif. Technol. 2018, 207, 20–27. [Google Scholar] [CrossRef]
- Bystrianský, M.; Nir, O.; Šír, M.; Honzajková, Z.; Vurm, R.; Hrychová, P.; Bervic, A.; van der Bruggen, B. The presence of ferric iron promotes calcium sulphate scaling in reverse osmosis processes. Desalination 2016, 393, 115–119. [Google Scholar] [CrossRef]
- Kavitha, A.; Vasudevan, T.; Prabu, H.G. Evaluation of synthesized antiscalants for cooling water system application. Desalination 2010, 268, 38–45. [Google Scholar] [CrossRef]
- Shakkthivel, P.; Ramesh, D.; Sathiyamoorthi, R.; Vasudevan, T. Water soluble copolymers for calcium carbonate and calcium sulphate scale control in cooling water systems. J. Appl. Polym. Sci. 2005, 96, 1451–1459. [Google Scholar] [CrossRef]
- Frenier, W.W.; Ziauddin, M. Formation, Removal, and Inhibition of Inorganic Scale in the Oilfield Environment; Society of Petroleum Engineers (SPE): Richardson, TX, USA, 2008. [Google Scholar] [CrossRef]
- Spinthaki, A.; Demadis, K.D. Chemical Methods for Scaling Control. In Corrosion and Fouling Control in Desalination Industry; Springer: Berlin/Heidelberg, Germany, 2020; pp. 307–342. [Google Scholar] [CrossRef]
- Kamal, M.S.; Hussein, I.; Mahmoud, M.; Sultan, A.S.; Saad, M.A. Oilfield scale formation and chemical removal: A review. J. Pet. Sci. Eng. 2018, 171, 127–139. [Google Scholar] [CrossRef]
- Lin, L.; Jiang, W.; Xu, X.; Xu, P. A critical review of the application of electromagnetic fields for scaling control in water systems: Mechanisms, characterization, and operation. NPJ Clean Water 2020, 3, 25. [Google Scholar] [CrossRef]
- Al Munif, E.H.; Alhamad, L.A.; Almubarak, T.A. Acoustic Anti-Scaling Technology for Sustainable Scaling Prevention in the Oil and Gas Industry. In Proceedings of the Society of Petroleum Engineers—ADIPEC, ADIP 2023, Abu Dhabi, United Arab Emirates, 2–5 October 2023. [Google Scholar] [CrossRef]
- Korzhakov, A.; Oskin, S. Thermal Protection Technology for Acoustic–Magnetic Device in a Geothermal Water Anti-Scaling System. Energies 2021, 14, 6024. [Google Scholar] [CrossRef]
- Hasson, D.; Sidorenko, G.; Semiat, R. Calcium carbonate hardness removal by a novel electrochemical seeds system. Desalination 2010, 263, 285–289. [Google Scholar] [CrossRef]
- Geng, M.; Zhong, S.; Wang, G.; Cui, P.; Chen, D. Research on the Influence of Circulating Cooling Water on Electrochemical Scale Inhibition. IOP Conf. Ser. Earth Environ. Sci. 2020, 514, 052021. [Google Scholar] [CrossRef]
- Charpentier, T.V.; Neville, A.; Baudin, S.; Smith, M.J.; Euvrard, M.; Bell, A.; Wang, C.; Barker, R. Liquid infused porous surfaces for mineral fouling mitigation. J. Colloid Interface Sci. 2015, 444, 81–86. [Google Scholar] [CrossRef]
- Sousa, M.F.; Loureiro, H.C.; Bertran, C.A. Anti-scaling performance of slippery liquid-infused porous surface (SLIPS) produced onto electrochemically-textured 1020 carbon steel. Surf. Coat. Technol. 2019, 382, 125160. [Google Scholar] [CrossRef]
- Kawarada, H.; Pironneau, O. Scale Prevention By Ceramic Balls. arXiv 2018, arXiv:1806.10598. [Google Scholar] [CrossRef]
- Gabrielli, C. Magnetic water treatment for scale prevention. Water Res. 2001, 35, 3249–3259. [Google Scholar] [CrossRef] [PubMed]
- Moya, S.M.; Botella, N.B. Review of Techniques to Reduce and Prevent Carbonate Scale. Prospecting in Water Treatment by Magnetism and Electromagnetism. Water 2021, 13, 2365. [Google Scholar] [CrossRef]
- Alimi, F.; Tlili, M.M.; Ben Amor, M.; Maurin, G.; Gabrielli, C. Effect of magnetic water treatment on calcium carbonate precipitation: Influence of the pipe material. Chem. Eng. Process. Process Intensif. 2009, 48, 1327–1332. [Google Scholar] [CrossRef]
- Chibowski, E.; Szcześ, A. Magnetic water treatment–A review of the latest approaches. Chemosphere 2018, 203, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Mascolo, M. Effect of magnetic field on calcium carbonate precipitated in natural waters with prevalent temporary hardness. J. Water Process. Eng. 2021, 41, 102087. [Google Scholar] [CrossRef]
- Parsons, S.; Judd, S.; Stephenson, T.; Udol, S.; Wang, B. Magnetically Augmented Water Treatment. Process. Saf. Environ. Prot. 1997, 75, 98–104. [Google Scholar] [CrossRef]
- Wang, Y.; Babchin, J.; Chernyi, L.; Chow, R.; Sawatzky, R. Rapid onset of calcium carbonate crystallization under the influence of a magnetic field. Water Res. 1997, 31, 346–350. [Google Scholar] [CrossRef]
- Liu, C.Z.; Lin, C.H.; Yeh, M.S.; Chao, Y.M.; Shen, P. Surface Modification and Planar Defects of Calcium Carbonates by Magnetic Water Treatment. Nanoscale Res. Lett. 2010, 5, 1982–1991. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, Y.; Zhao, Y.; Sun, X.; Zhang, H.; Piao, H.-G.; Zhang, Y.; Huang, Y. The effect of magnetic field pretreatment on the corrosion behavior of carbon steel in static seawater. RSC Adv. 2020, 10, 2060–2066. [Google Scholar] [CrossRef]
- Barham, W.S.; Albiss, B.; Latayfeh, O. Influence of magnetic field treated water on the compressive strength and bond strength of concrete containing silica fume. J. Build. Eng. 2020, 33, 101544. [Google Scholar] [CrossRef]
- Ramalingam, M.; Narayanan, K.; Sivamani, J.; Kathirvel, P.; Murali, G.; Vatin, N.I. Experimental Investigation on the Potential Use of Magnetic Water as a Water Reducing Agent in High Strength Concrete. Materials 2022, 15, 5219. [Google Scholar] [CrossRef]
- Ghauri, S.A.; Ansari, M.S. Increase of water viscosity under the influence of magnetic field. J. Appl. Phys. 2006, 100, 066101. [Google Scholar] [CrossRef]
- Cai, R.; Yang, H.; He, J.; Zhu, W. The effects of magnetic fields on water molecular hydrogen bonds. J. Mol. Struct. 2009, 938, 15–19. [Google Scholar] [CrossRef]
- Otsuka, I.; Ozeki, S. Does Magnetic Treatment of Water Change Its Properties? J. Phys. Chem. B 2006, 110, 1509–1512. [Google Scholar] [CrossRef] [PubMed]
- Mghaiouini, R.; Elmalouky, A.; Benzbiria, N.; El Moznine, R.; Monkade, M.; El Bouari, A. The influence of the electromagnetic field on the electric properties of water. Mediterr. J. Chem. 2020, 10, 507–515. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Q.; Wei, K.; Guo, Y.; Mu, W.; Sun, Y. Magnetic Water Treatment: An Eco-Friendly Irrigation Alternative to Alleviate Salt Stress of Brackish Water in Seed Germination and Early Seedling Growth of Cotton (Gossypium hirsutum L.). Plants 2022, 11, 1397. [Google Scholar] [CrossRef]
- Ali, Y.; Samaneh, R.; Kavakebian, F. Applications of Magnetic Water Technology in Farming and Agriculture Development: A Review of Recent Advances. Curr. World Environ. J. 2014, 9, 695–703. [Google Scholar] [CrossRef]
- Herea, D.-D.; Danceanu, C.; Radu, E.; Labusca, L.; Lupu, N.; Chiriac, H. Comparative effects of magnetic and water-based hyperthermia treatments on human osteosarcoma cells. Int. J. Nanomed. 2018, 13, 5743–5751. [Google Scholar] [CrossRef]
- Sadhukha, T.; Niu, L.; Wiedmann, T.S.; Panyam, J. Effective Elimination of Cancer Stem Cells by Magnetic Hyperthermia. Mol. Pharm. 2013, 10, 1432–1441. [Google Scholar] [CrossRef]
- Baker, J.S.; Judd, S.J. Magnetic amelioration of scale formation. Water Res. 1996, 30, 247–260. [Google Scholar] [CrossRef]
- Martínez-Pedrero, F.; Ortega, F.; Codina, J.; Calero, C.; Rubio, R.G. Controlled disassembly of colloidal aggregates confined at fluid interfaces using magnetic dipolar interactions. J. Colloid Interface Sci. 2019, 560, 388–397. [Google Scholar] [CrossRef]
- Umeki, S.; Kato, T.; Shimabukuro, H.; Yoshikawa, N.; Taniguchi, S.; Tohji, K. Elucidation of the Scale Prevention Effect by Alternating Magnetic Treatment. AIP Conf. Proc. 2007, 898, 170–174. [Google Scholar] [CrossRef]
- Baker, J.S.; Judd, S.J.; Parsons, S.A. Antiscale magnetic pretreatment of reverse osmosis feedwater. Desalination 1997, 110, 151–165. [Google Scholar] [CrossRef]
- Salman, M.; Al-Nuwaibit, G. Anti-Scale Magnetic Method as a Prevention Method for Calcium Carbonate Scaling. Online J. Sci. Technol. 2017, 7. Available online: https://www.tojsat.net/journals/tojsat/articles/v07i04/v07i04-04.pdf (accessed on 10 December 2024).
- Piyadasa, C.; Ridgway, H.F.; Yeager, T.R.; Stewart, M.B.; Pelekani, C.; Gray, S.R.; Orbell, J.D. The application of electromagnetic fields to the control of the scaling and biofouling of reverse osmosis membranes—A review. Desalination 2017, 418, 19–34. [Google Scholar] [CrossRef]
- Sronsri, C.; Sittipol, W.; U-Yen, K. Effect of the magnetic field produced by a Halbach array magnetizer on water UV absorption, removal of scale and change in calcium carbonate polymorphs. Anal. Methods 2022, 14, 2485–2496. [Google Scholar] [CrossRef] [PubMed]
- Coey, J.; Cass, S. Magnetic water treatment. J. Magn. Magn. Mater. 2000, 209, 71–74. [Google Scholar] [CrossRef]
- Ogino, T.; Suzuki, T.; Sawada, K. The formation and transformation mechanism of calcium carbonate in water. Geochim. Cosmochim. Acta 1987, 51, 2757–2767. [Google Scholar] [CrossRef]
- Ma, M.; Wang, Y.; Cao, X.; Lu, W.; Guo, Y. Temperature and Supersaturation as Key Parameters Controlling the Spontaneous Precipitation of Calcium Carbonate with Distinct Physicochemical Properties from Pure Aqueous Solutions. Cryst. Growth Des. 2019, 19, 6972–6988. [Google Scholar] [CrossRef]
- Hashimoto, R.; Morita, M.; Umezawa, O.; Motoda, S. Effect of Ions Eluted from Metal Surface on Transformation and Growth of Calcium Carbonate Polymorphisms. J. Jpn. Inst. Met. Mater. 2017, 81, 89–96. [Google Scholar] [CrossRef]
- KAKEN—Research Projects|2016 Fiscal Year Final Research Report (KAKENHI-PROJECT-25288003). Available online: https://kaken.nii.ac.jp/en/report/KAKENHI-PROJECT-25288003/25288003seika/ (accessed on 4 December 2024).
- Kojima, Y.; Sadotomo, A.; Yasue, T.; Arai, Y. Control of Crystal Shape and Modification of Calcium Carbonate Prepared by Precipitation from Calcium Hydrogencarbonate Solution. J. Ceram. Soc. Jpn. 1992, 100, 1145–1153. [Google Scholar] [CrossRef]
- Amer, L.; Ouhenia, S.; Chateigner, D.; Gascoin, S.; Belabbas, I. The effect of a magnetic field on the precipitation of calcium carbonate. Appl. Phys. A 2021, 127, 716. [Google Scholar] [CrossRef]
- Madsen, H.E.L. Crystallization of calcium carbonate in magnetic field in ordinary and heavy water. J. Cryst. Growth 2004, 267, 251–255. [Google Scholar] [CrossRef]
- Rodriguez-Blanco, J.D.; Shaw, S.; Benning, L.G. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale 2011, 3, 265–271. [Google Scholar] [CrossRef]
- Higashitani, K.; Oshitani, J. Recent Advance in Magneto-Science. Magnetic Effect on the Interface between Aqueous Solution and Solid. Hyomen Kagaku 1999, 20, 764–769. [Google Scholar] [CrossRef]
- Fathi, A.; Mohamed, T.; Claude, G.; Maurin, G.; Mohamed, B.A. Effect of a magnetic water treatment on homogeneous and heterogeneous precipitation of calcium carbonate. Water Res. 2006, 40, 1941–1950. [Google Scholar] [CrossRef]
- Knez, S.; Pohar, C. The magnetic field influence on the polymorph composition of CaCO3 precipitated from carbonized aqueous solutions. J. Colloid Interface Sci. 2005, 281, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.; Rampal, N.; Du, X.; Shu, F.; Wang, Y.; Wang, H.; Stack, A.G.; Ben Ishai, P.; Anovitz, L.M.; Xu, P. Impact of magnetic and electric fields on the free energy to form a calcium carbonate ion-pair. Phys. Chem. Chem. Phys. 2024, 26, 27891–27901. [Google Scholar] [CrossRef] [PubMed]
- Colic, M.; Morse, D. The elusive mechanism of the magnetic ‘memory’ of water. Colloids Surfaces A Physicochem. Eng. Asp. 1999, 154, 167–174. [Google Scholar] [CrossRef]
- Basu, S.; Ogawa, T.; Ishihara, K.N. The methods and factors of decoupling energy usage and economic growth. In Waste-to-Energy Approaches Towards Zero Waste; Elsevier Inc.: Amsterdam, The Netherlands, 2022; pp. 269–313. [Google Scholar] [CrossRef]
Sample No. | Type of Water | Water Temperature [℃] |
---|---|---|
Sample 1 | NW | 5 |
Sample 2 | MTW | 5 |
Sample 3 | NW | 15 |
Sample 4 | MTW | 15 |
Sample 5 | NW | 25 |
Sample 6 | MTW | 25 |
Sample 7 | NW | 35 |
Sample 8 | MTW | 35 |
Sample 9 | NW | 45 |
Sample 10 | MTW | 45 |
Sample Name | Type of Water | Circulating Solution |
---|---|---|
Sample A | NW | NaHCO3 |
Sample B | MTW | NaHCO3 |
Sample C | NW | CaCl2 |
Sample D | MTW | CaCl2 |
Sample E | NW | CaCO3(+NaCl) |
Sample F | MTW | CaCO3(+NaCl) |
Sample G | NW | NaHCO3 and CaCl2 |
Sample H | MTW | NaHCO3 and CaCl2 |
NW | MTW | ||||||
---|---|---|---|---|---|---|---|
Calcite | Vaterite | Aragonite | Calcite | Vaterite | Aragonite | ||
5 °C | average (%) | 97.1 | 1.3 | 0.4 | 97.9 | 1.1 | 1 |
standard error | 1.2 | 0.9 | 0.4 | 0.7 | 0.6 | 0.1 | |
15 °C | average (%) | 94.8 | 4.0 | 0.4 | 89.7 | 9.5 | 0.9 |
standard error | 3.3 | 3.4 | 0.3 | 0.9 | 0.8 | 0.2 | |
25 °C | average (%) | 73.2 | 26.0 | 0.8 | 48.1 | 50.9 | 0.9 |
standard error | 1.5 | 1.6 | 0.2 | 2.2 | 2.2 | 0.2 | |
35 °C | average (%) | 70 | 29.4 | 0.6 | 64.4 | 35.0 | 0.6 |
standard error | 3.3 | 3.4 | 0.1 | 3.3 | 3.3 | 0.1 | |
45 °C | average (%) | 77.6 | 22.9 | 0.4 | 58.9 | 40.6 | 0.5 |
standard error | 3.5 | 3.9 | 0.2 | 4.7 | 4.6 | 0.2 |
Peak Center (µm) | Range (µm) | Average (µm) | ||
---|---|---|---|---|
5 °C | NW | 2.08 | 1.20 | 2.08 |
MTW | 2.05 | 1.12 | 2.01 | |
15 °C | NW | 2.54 | 2.38 | 2.63 |
MTW | 2.40 | 1.26 | 2.42 | |
25 °C | NW | 2.72 | 2.81 | 2.75 |
MTW | 2.60 | 1.60 | 2.66 | |
35 °C | NW | 2.81 | 3.83 | 2.97 |
MTW | 2.80 | 2.39 | 2.83 | |
45 °C | NW | 2.88 | 3.89 | 3.11 |
MTW | 2.78 | 2.17 | 2.83 |
NW | MTW | ||||||
---|---|---|---|---|---|---|---|
Calcite | Vaterite | Aragonite | Calcite | Vaterite | Aragonite | ||
Pure Water | average (%) | 73.2 | 26.0 | 0.8 | 48.1 | 50.9 | 0.9 |
standard error | 1.5 | 1.6 | 0.2 | 2.2 | 2.2 | 0.2 | |
NaHCO3 | average (%) | 87.0 | 12.2 | 0.8 | 80.5 | 18.2 | 1.3 |
standard error | 3.5 | 2.1 | 0.3 | 2.8 | 2.0 | 0.3 | |
CaCl2 | average (%) | 92.2 | 6.1 | 0.7 | 91.2 | 7.9 | 0.9 |
standard error | 2.0 | 1.5 | 0.2 | 2.1 | 2.4 | 0.4 | |
CaCO3 (+NaCl) | average (%) | 97.9 | 1.7 | 0.4 | 97.0 | 2.1 | 0.9 |
standard error | 2.1 | 2.5 | 0.3 | 3.3 | 3.3 | 0.5 | |
NaHCO3 and CaCl2 | average (%) | 93.9 | 6.5 | 0.6 | 58.2 | 41.3 | 0.5 |
standard error | 2.2 | 2.7 | 0.4 | 3.5 | 3.2 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayed, A.A.M.; Basu, S.; Ogawa, T.; Inagawa, K.; Okumura, H. Elucidating the Memory Effects of Magnetic Water Treatment via Precipitated Phase Changes of Calcium Carbonate. Eng 2025, 6, 26. https://doi.org/10.3390/eng6020026
Sayed AAM, Basu S, Ogawa T, Inagawa K, Okumura H. Elucidating the Memory Effects of Magnetic Water Treatment via Precipitated Phase Changes of Calcium Carbonate. Eng. 2025; 6(2):26. https://doi.org/10.3390/eng6020026
Chicago/Turabian StyleSayed, Aly Ahmed Mohamed, Soumya Basu, Takaya Ogawa, Keito Inagawa, and Hideyuki Okumura. 2025. "Elucidating the Memory Effects of Magnetic Water Treatment via Precipitated Phase Changes of Calcium Carbonate" Eng 6, no. 2: 26. https://doi.org/10.3390/eng6020026
APA StyleSayed, A. A. M., Basu, S., Ogawa, T., Inagawa, K., & Okumura, H. (2025). Elucidating the Memory Effects of Magnetic Water Treatment via Precipitated Phase Changes of Calcium Carbonate. Eng, 6(2), 26. https://doi.org/10.3390/eng6020026