Studying the Degree of Tooth Enamel Mineralization through Raman Spectroscopy in Various Spectral Ranges
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raman Spectroscopy
2.2. Samples of Removed Teeth
2.3. Patient Groups
3. Results
3.1. Scanning Raman Microscopy
3.2. Choosing the Optimal Raman System
3.3. Raman Fiber Spectroscopy In Vitro
3.4. Raman Fiber Spectroscopy In Vivo
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259. [Google Scholar] [CrossRef] [Green Version]
- Gomez, J. Detection and diagnosis of the early caries lesion. BMC Oral Health 2015, 15 (Suppl. 1), S3. [Google Scholar] [CrossRef] [Green Version]
- Kozhevnikova, A.I.; Klyagina, A.A. Electric pulp test in in the daily practice of a dentist. Bull. Med. Internet Conf. 2016, 6, 5. [Google Scholar]
- Nokhbatolfoghahaie, H.; Alikhasi, M.; Chiniforush, N.; Khoei, F.; Safavi, N.; Yaghoub Zadeh, B. Evaluation of Accuracy of DIAGNOdent in Diagnosis of Primary and Secondary Caries in Comparison to Conventional Methods. J. Lasers Med. Sci. 2013, 4, 159–167. [Google Scholar]
- Granko, S.A.; Danilova, D.V.; Beloded, L.V. Diagnosis of initial carious lesions of hard tooth tissues. Sovremennayastomatologiya 2017, 4, 59–62. [Google Scholar]
- Rusanov, F.S.; Maev, R.G.; Titov, S.A. Non-destructive method for measuring enamel thickness using ultrasonic waves. Stomatologiia 2012, 91, 4–6. [Google Scholar]
- Yanushevich, O.O. Therapeutic Dentistry; Yanushevich, O.O., Maksimovskii, Y.M., Maksimovskaya, L.N., Orekhova, L.Y., Eds.; GEOTAR-Media: Moscow, Russia, 2016; 760p. [Google Scholar]
- Chukanov, N.V. Raman Spectra of Minerals; Chukanov, N.V., Vigasina, M.F., Eds.; Springer Mineralogy; Springer: Cham, Switzerland, 2020; pp. 741–1255. [Google Scholar]
- Ramakrishnaiah, R.; Rehman, G.; Basavarajappa, S. Applications of Raman Spectroscopy in Dentistry: Analysis of Tooth Structure. Appl. Spectrosc. Rev. 2015, 50, 332–350. [Google Scholar] [CrossRef]
- Khalid, M.; Bora, T.; Ghaithi, A.A.; Thukral, S.; Dutta, J. Raman Spectroscopy detects changes in Bone Mineral Quality and Collagen Cross-linkage in Staphylococcus Infected Human Bone. Sci. Rep. 2018, 8, 9417. [Google Scholar] [CrossRef] [PubMed]
- Kourkoumelis, N.; Balatsoukas, I.; Moulia, V.; Elka, A.; Gaitanis, G.; Bassukas, I.D. Advances in the in Vivo Raman Spectroscopy of Malignant Skin Tumors Using Portable Instrumentation. Int. J. Mol. Sci. 2015, 16, 14554–14570. [Google Scholar] [CrossRef] [Green Version]
- Rau, J.V.; Graziani, V.; Fosca, M.; Taffon, C.; Rocchia, M.; Crucitti, P.; Pozzilli, P.; Onetti Muda, A.; Caricato, M.; Crescenzi, A. RAMAN spectroscopy imaging improves the diagnosis of papillary thyroid carcinoma. Sci. Rep. 2016, 6, 35117. [Google Scholar] [CrossRef] [Green Version]
- Lorincz, A.; Haddad, D.; Naik, R.; Naik, V.M.; Fung, A.; Cao, A.; Manda, P.; Pandya, A.; Auner, G.; Rabah, R.; et al. Raman spectroscopy for neoplastic tissue differentiation: A pilot study. J. Pediatr. Surg. 2004, 39, 953–956. [Google Scholar] [CrossRef]
- Wang, J.; Wu, X.; Wang, C.; Rong, Z.; Ding, H.; Li, H.; Li, S.; Shao, N.; Dong, P.; Xiao, R.; et al. Facile Synthesis of Au-Coated Magnetic Nanoparticles and Their Application in Bacteria Detection via a SERS Method. ACS Appl. Mater. Interfaces 2016, 8, 19958–19967. [Google Scholar] [CrossRef]
- Moncada, B.; Castillo-Martínez, C.; Arenas, E.; León-Bejarano, F.; Ramírez-Elías, M.G.; Gonzalez, F.J. Raman spectroscopy analysis of the skin of patients with melasma before standard treatment with topical corticosteroids, retinoic acid, and hydroquinone mixture. Skin Res. Technol. 2016, 22, 170–173. [Google Scholar] [CrossRef]
- Hanchanale, V.S.; Rao, A.R.; Das, S. Raman spectroscopy and its urological applications. Indian J. Urol. 2008, 24, 444–450. [Google Scholar] [CrossRef]
- Cui, X.; Zhao, Z.; Zhang, G.; Chen, S.; Zhao, Y.; Lu, J. Analysis and classification of kidney stones based on Raman spectroscopy. Biomed. Opt. Express 2018, 9, 4175–4183. [Google Scholar] [CrossRef]
- John, M.C.; Howell, G.; Edwards, H.G.; Hargreaves, M.D. Infrared and Raman Spectroscopy in Forensic Science; Wiley: New York, NY, USA, 2012; 646p. [Google Scholar]
- Vankeirsbilck, T.; Vercauteren, A.; Baeyens, W.; Van der Weken, G.; Verpoort, F.; Vergote, G.; Remon, J. Applications of Raman spectroscopy in pharmaceutical analysis. TrAC Trends Anal. Chem. 2002, 21, 869–877. [Google Scholar] [CrossRef]
- Kudelski, A. Analytical applications of Raman spectroscopy. Talanta 2008, 76, 1–8. [Google Scholar] [CrossRef]
- Votyakov, S.L.; Mandra, Y.V.; Kiseleva, D.V. Mineralogic al stomatology as an interdisciplinary research field: Recent results and development prospects. Probl. Dent. 2017, 13, 3–16. [Google Scholar]
- Buchwald, T.; Buchwald, Z. Assessment of the Raman spectroscopy effectiveness in determining the early changes in human enamel caused by artificial caries. Analyst. 2019, 144, 1409–1419. [Google Scholar] [CrossRef] [PubMed]
- Mandra, Y.V.; Votyakov, S.L.; Ivashov, A.S.; Kiseleva, D.V. Possibilities of using Raman microscopy for studying structural features of hard tissues of human teeth. J. Exp. Clin. Dent. 2011, 1, 24–28. [Google Scholar]
- Yanushevich, O.O. Photoluminescence of Dental Hard Tissues; Academia Estestvoznaniya: Moscow, Russia, 2014; 53p. [Google Scholar]
- Prikuls, V.F.; Karneeva, O.V.; Kim, I.A.; Alexandrov, M.T.; Kukushkin, V.I.; Prikule, D.V. Oral hygiene level objectification in preventive screening of patients with ENT-organs pathology using digital optical diagnostics methods. Clin. Dent. 2020, 1, 34–39. [Google Scholar] [CrossRef]
- Avci, P.; Gupta, A.; Sadasivam, M.; Vecchio, D.; Pam, Z.; Pam, N.; Hamblin, M. Low-Level Laser (Light) Therapy (LLLT) in skin: Stimulating, healing, restoring. Semin. Cutan. Med. Surg. 2013, 32, 41–52. [Google Scholar]
- Polat, S.; Er, K.; Polat, N.T. Penetration depth of laser Doppler flowmetry beam in teeth. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2005, 100, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, L.; Feraric, M.; Hoster, E.; Litzenburger, F.; Kunzelmann, K.-H. Investigations of the optical properties of enamel and dentin for early caries detection. Clin. Oral Investig. 2021, 25, 1281–1289. [Google Scholar] [CrossRef] [PubMed]
- Schmid, T.; Dariz, P. Raman Microspectroscopic Imaging of Binder Remnants in Historical Mortars Reveals Processing Conditions. Heritage 2019, 2, 1662–1683. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Kanaujia, S.K.; Singh, A.; Pradhan, A. In vivo detection of oral precancer using a fluorescence-based, in-house-fabricated device: A Mahalanobis distance-based classification. Lasers Med. Sci. 2019, 34, 1243–1251. [Google Scholar] [CrossRef] [PubMed]
- Bachir, W.; Hamadah, O. Second derivative diffuse reflectance spectroscopy for estimating tissue hypoxia. OSA Contin. 2021, 4, 650–664. [Google Scholar] [CrossRef]
Tooth Type | Cervical Region, Thickness, mm | Equator, Thickness, mm | Cutting Edge, Thickness, mm |
---|---|---|---|
Upper jaw | |||
Incisor 1 | 0.27 ± 0.01 | 0.84 ± 0.05 | 0.97 ± 0.06 |
Incisor 2 | 0.32 ± 0.01 | 0.92 ± 0.06 | 1.04 ± 0.06 |
Canine | 0.28 ± 0.01 | 0.79 ± 0.05 | 0.89 ± 0.05 |
Premolar 1 | 0.31 ± 0.01 | 1.01 ± 0.06 | 1.33 ± 0.08 |
Premolar 2 | 0.36 ± 0.02 | 1.11 ± 0.07 | 1.56 ± 0.09 |
Molar 1 | 0.38 ± 0.02 | 1.25 ± 0.08 | 1.76 ± 0.11 |
Molar 2 | 0.39 ± 0.02 | 1.31 ± 0.08 | 1.89 ± 0.11 |
Lower jaw | |||
Incisor 1 | 0.17 ± 0.01 | 0.73 ± 0.04 | 0.89 ± 0.05 |
Incisor 2 | 0.23 ± 0.01 | 0.83 ± 0.05 | 0.98 ± 0.06 |
Canine | 0.19 ± 0.01 | 0.78 ± 0.05 | 0.84 ± 0.05 |
Premolar 1 | 0.21 ± 0.01 | 0.98 ± 0.06 | 1.41 ± 0.08 |
Premolar 2 | 0.23 ± 0.01 | 1.02 ± 0.06 | 1.58 ± 0.09 |
Molar 1 | 0.24 ± 0.01 | 1.17 ± 0.07 | 1.68 ± 0.10 |
Molar 2 | 0.30 ± 0.02 | 1.21 ± 0.07 | 1.72 ± 0.10 |
Tooth Type | Cervical Region, Thickness, mm | Equator, Thickness, mm | Cutting Edge, Thickness, mm |
---|---|---|---|
Upper jaw | |||
Incisor 1 | 0.19 ± 0.02 | 0.73 ± 0.04 | 0.90 ± 0.05 |
Incisor 2 | 0.23 ± 0.02 | 0.89 ± 0.05 | 0.97 ± 0.06 |
Canine | 0.20 ± 0.02 | 0.76 ± 0.05 | 0.80 ± 0.05 |
Premolar 1 | 0.22 ± 0.02 | 0.98 ± 0.06 | 1.20 ± 0.07 |
Premolar 2 | 0.27 ± 0.03 | 1.05 ± 0.06 | 1.30 ± 0.08 |
Molar 1 | 0.30 ± 0.03 | 1.20 ± 0.07 | 1.88 ± 0.11 |
Molar 2 | 0.34 ± 0.03 | 1.27 ± 0.08 | 1.93 ± 0.12 |
Lower jaw | |||
Incisor 1 | 0.15 ± 0.02 | 0.67 ± 0.04 | 0.80 ± 0.05 |
Incisor 2 | 0.20 ± 0.02 | 0.80 ± 0.05 | 0.91 ± 0.05 |
Canine | 0.17 ± 0.02 | 0.70 ± 0.04 | 0.78 ± 0.05 |
Premolar 1 | 0.19 ± 0.02 | 0.92 ± 0.06 | 1.20 ± 0.07 |
Premolar 2 | 0.21 ± 0.02 | 0.97 ± 0.06 | 1.20 ± 0.07 |
Molar 1 | 0.24 ± 0.02 | 1.11 ± 0.07 | 1.70 ± 0.10 |
Molar 2 | 0.29 ± 0.03 | 1.15 ± 0.07 | 1.77 ± 0.11 |
Research Area | Intensity of Raman Scattering, a.u. |
---|---|
Incisors (N = 10) | |
Cervical region | 807 ± 24 |
Equator | 927 ± 19 |
Cutting edge | 879 ± 21 |
Canines (N = 10) | |
Cervical region | 738 ± 22 |
Equator | 1102 ± 24 |
Cutting edge | 1312 ± 28 |
Premolars (N = 10) | |
Cervical region | 713 ± 25 |
Equator | 1021 ± 23 |
Cutting edge | 1117 ± 26 |
Molars (N = 10) | |
Cervical region | 679 ± 20 |
Equator | 931 ± 29 |
Cutting edge | 993 ± 31 |
Research Area | Intensity of Raman Scattering, a.u. |
---|---|
Incisors (N = 64) | |
Cervical region | 153 ± 27 |
Equator | 157 ± 23 |
Cutting edge | 140 ± 22 |
Canines (N = 64) | |
Cervical region | 145 ± 24 |
Equator | 157 ± 28 |
Cutting edge | 167 ± 29 |
Premolars (N = 64) | |
Cervical region | 140 ± 11 |
Equator | 150 ± 14 |
Cutting edge | 165 ± 15 |
Molars (N = 64) | |
Cervical region | 147 ± 32 |
Equator | 160 ± 21 |
Cutting edge | 178 ± 22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prikule, D.V.; Kukushkin, V.I.; Mitronin, A.V.; Prikuls, V.F. Studying the Degree of Tooth Enamel Mineralization through Raman Spectroscopy in Various Spectral Ranges. Biophysica 2021, 1, 269-278. https://doi.org/10.3390/biophysica1030020
Prikule DV, Kukushkin VI, Mitronin AV, Prikuls VF. Studying the Degree of Tooth Enamel Mineralization through Raman Spectroscopy in Various Spectral Ranges. Biophysica. 2021; 1(3):269-278. https://doi.org/10.3390/biophysica1030020
Chicago/Turabian StylePrikule, Diana V., Vladimir I. Kukushkin, Aleksandr V. Mitronin, and Vladislav F. Prikuls. 2021. "Studying the Degree of Tooth Enamel Mineralization through Raman Spectroscopy in Various Spectral Ranges" Biophysica 1, no. 3: 269-278. https://doi.org/10.3390/biophysica1030020
APA StylePrikule, D. V., Kukushkin, V. I., Mitronin, A. V., & Prikuls, V. F. (2021). Studying the Degree of Tooth Enamel Mineralization through Raman Spectroscopy in Various Spectral Ranges. Biophysica, 1(3), 269-278. https://doi.org/10.3390/biophysica1030020