Response of Biodiversity, Ecosystems, and Ecosystem Services to Climate Change in China: A Review
Abstract
:1. Introduction
2. Data Sources and Analytical Methods
3. Results
3.1. Overall Research Trends
3.2. Increasing Threat to Biodiversity
3.2.1. Phenological Changes
3.2.2. Geographical Expansion of Species
3.3. Ecosystems
3.3.1. Biological Invasion Accelerates Expansion
3.3.2. Increasing Threat of Extreme Events
3.3.3. The Prediction of Potential Impact
3.4. Ecosystem Services
3.4.1. Provisioning Service
3.4.2. Regulating Services
3.4.3. Supporting Services
3.4.4. Cultural Services
4. Discussion
4.1. Improve Ecosystem Resilience and Reduce the Loss of Ecosystem Services
4.2. Update Technology and Artificial Intervention to Improve Adaptability
4.3. Strengthen Government Intervention and Management
5. Conclusions and Future Prospects
- (1)
- Ecosystem: We found that the temperature has risen significantly in the vast area of China, and the average annual precipitation also showed an increasing trend, which would have an impact on the ecosystem. In recent years, the frequency of extreme events (droughts, rainstorms, fires, etc.) has increased in China. We found that extreme events may bring more significant impacts on the ecosystem in the short term, especially in natural ecosystems and agricultural ecosystems. Therefore, we need to pay more attention to the impact of extreme events on China’s sensitive and fragile terrestrial ecosystems in the future. At the same time, we predict that climate change may aggravate biological invasion to the North and Northwest. Therefore, we still need to learn from the international biological invasion database and strengthen international cooperation, build and improve China’s biological invasion database, and speed up the legislation of biosafety laws.
- (2)
- Biodiversity: A large number of studies have proven that plant phenology has shown an obvious advance trend in recent decades in most of China’s land, and the growing season is continuously extending, which has brought great challenges to the management of agricultural resources. Therefore, the farmers have a wider sowing window in spring and can select cultivars with long growing season duration and frost tolerance to mitigate the detrimental effects of a future warmer climate.
- (3)
- Ecosystem services: Our analysis suggests that the impact of climate change on most types of services in China is mainly negative. The favorable aspects involve the expansion of some crops, which can provide more products for human beings, while the unfavorable aspects may affect the yield and quality of food, water resources, human settlements, and other aspects. Therefore, it is necessary to vigorously improve the ecosystem service functions of remote areas to ensure the livelihood and well-being of local people in the future.
- (4)
- Natural resource management: Climate change challenges and opportunities coexist, and it is yet to be realized to integrate climate change into natural resource management. Climate change can have a significant impact on the effectiveness of management decisions targeted at sustaining ecosystem service provision, but implementing actions on the ground can be difficult due to lack of funding and time, negative public perceptions, and difficulty transferring science between researchers and policymakers. Meanwhile, pose challenges to natural resource management in government departments. Moving forward, it is necessary to evaluate and research the effectiveness of typical demonstration cases and guide climate-smart management.
- (5)
- Positive impacts and actions of climate change: We are facing due to climate change about ecosystems challenges (negative impacts). Meanwhile, there are following positive impacts on the ecosystem due to climate change: For example, the regional “warming and wetting” caused by climate change in recent years has accelerated the restoration of ecosystems such as forests, grasslands and deserts; Climate change is a global issue that requires joint governance by multiple jurisdictions and countries. Therefore, climate change can promote international cooperation and strengthen links among countries and build a community of common destiny for all mankind; It can improve human resistance to climate change and promote the progress of science and technology. At the same time, it will also accelerate the rise of scientific research such as ecosystem services and ecosystem management.
- (6)
- What specific topics should scientists particularly put more efforts into? We believe that in the context of climate change, scientists from various countries need to further strengthen communication and exchange, and constantly expand new research fields, research methods, and ideas. According to our research summary, future scientists should pay special attention to topics such as climate change and food security, climate change and biodiversity, climate change and global diseases, ecosystem change and human well-being, ecosystem services and management, and pay attention to the combination of multiple disciplines.
Author Contributions
Funding
Conflicts of Interest
References
- Zheng, H.; Wang, L.; Peng, W.; Zhang, C.; Li, C.; Robinson, B.E.; Wu, X.; Kong, L.; Li, R.; Xiao, Y.; et al. Realizing the values of natural capital for inclusive, sustainable development: Informing China’s new ecological development strategy. Proc. Natl. Acad. Sci. USA 2019, 116, 8623–8628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz, S.; Settele, J.; Brondízio, E.; Ngo, H.T.; Guèze, M.; Trinidad, J.A.; Arneth, A.; Balvanera, P.; Brauman, K.; Butchart, S.; et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2019. [Google Scholar]
- Cobb, K.; Diongue-Niang, A.; Edwards, P.; Emori, S.; Faria, S.H.; Hawkins, E.; Hope, P.; Huybrechts, P.; Meinshausen, M.; Mustafa, S.; et al. (Eds.) IPCC AR6. Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Easterling, D.R.; Evans, J.L.; Groisman, P.Y.; Karl, T.R.; Kunkel, K.E.; Ambenje, P. Observed variability and trends in extreme climate events: A brief review. Bull. Am. Meteorol. Soc. 2000, 81, 417–425. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Ma, K. Response and Acclimation of Biodiversity and Ecosystem Function to Global Change: Coordinated Approach. Chin. J. Nat. 2010, 5, 272–280. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: A Framework for Assessment; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Climate Change Center of China Meteorological Administration. Blue Book on Climate Change in China 2020; Science Press: Beijing, China, 2020. [Google Scholar]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovern-Mental Panel on Climate Change, Summary for Policymakers (IPCC 2013); Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Chase, J.M.; Blowes, S.A.; Knight, T.M.; Gerstner, K.; May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nat. Cell Biol. 2020, 584, 238–243. [Google Scholar] [CrossRef]
- Rahbek, C.; Borregaard, M.K.; Colwell, R.K.; Dalsgaard, B.; Holt, B.G.; Morueta-Holme, N.; Nogues-Bravo, D.; Whittaker, R.J.; Fjeldså, J. Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science 2019, 365, 1108–1113. [Google Scholar] [CrossRef]
- Macgregor, C.J.; Thomas, C.D.; Roy, D.B.; Beaumont, M.A.; Bell, J.R.; Brereton, T.; Bridle, J.R.; Dytham, C.; Fox, R.; Gotthard, K.; et al. Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.-C.; Hill, J.K.; Ohlemuller, R.; Roy, D.B.; Thomas, C.D. Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef]
- Rudolf, V.H.W. The role of seasonal timing and phenological shifts for species coexistence. Ecol. Lett. 2019, 22, 1324–1338. [Google Scholar] [CrossRef]
- Thomey, M.L.; Collins, S.L.; Vargas, R.; Johnson, J.E.; Brown, R.F.; Natvig, D.O.; Friggens, M.T. Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan desert grassland. Glob. Change Biol. 2011, 17, 1505–1515. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.; Zhu, G.; Fang, W.; Cao, K.; Chen, C.; Wang, X.; Wang, X. Phenological response of peach to climate change exhibits a relatively dramatic trend in China, 1983–2012. Sci. Hortic. 2016, 209, 192–200. [Google Scholar] [CrossRef]
- Meng, F.; Cui, S.; Wang, S.; Duan, J.; Jiang, L.; Zhang, Z.; Luo, C.; Wang, Q.; Zhou, Y.; Li, X.; et al. Variation of onset of phenophases determines the duration of phenophases on the Tibetan Platea. Agric. For. Meteorol. 2016, 224, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Meng, F.; Zhang, L.; Zhang, Z.; Jiang, L.; Wang, Y.; Duan, J.; Wang, Q.; Li, B.; Liu, P.; Hong, H.; et al. Enhanced spring temperature sensitivity of carbon emission links to earlier phenology. Sci. Total. Environ. 2020, 745, 140999. [Google Scholar] [CrossRef]
- Hu, Q.; Pan, F.; Pan, X.; Zhang, D.; Li, Q.; Pan, Z.; Wei, Y. Spatial analysis of climate change in Inner Mongolia during 1961–2012, China. Appl. Geogr. 2015, 60, 254–260. [Google Scholar] [CrossRef]
- Miao, L.; Muller, D.; Cui, X.; Ma, M. Changes in vegetation phenology on the Mongolian Plateau and their climatic determinants. PLoS ONE 2017, 12, e0190313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Gan, Y.; Wang, R.; Niu, J.; Zhao, H.; Yang, Q.; Li, G. Phenological trends in winter wheat and spring cotton in response to climate changes in northwest China. Agric. For. Meteorol. 2008, 148, 1242–1251. [Google Scholar] [CrossRef]
- Pacifici, M.; Visconti, P.; Butchart, S.H.M.; Watson, J.; Cassola, F.M.; Rondinini, C. Species’ traits influenced their response to recent climate change. Nat. Clim. Change 2017, 7, 205–208. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Luo, P.; Luo, C.; Yang, H.; Li, Y.J.; Zuo, D.D.; Xiong, Q.L.; Mo, L.; Mu, C.X.; Gu, X.D.; et al. Long-term empirical monitoring indicates the tolerance of the giant panda habitat to climate change under contemporary conservation policies. Ecol. Indic. 2020, 110, 105886. [Google Scholar] [CrossRef]
- Du, H.; Liu, J.; Li, M.-H.; Büntgen, U.; Yang, Y.; Wang, L.; Wu, Z.; Zhengfang, W. Warming-induced upward migration of the alpine treeline in the Changbai Mountains, northeast China. Glob. Change Biol. 2018, 24, 1256–1266. [Google Scholar] [CrossRef]
- Shi, Y.; Shen, Y.; Kang, E.; Li, D.; Ding, Y.; Zhang, G.; Hu, R. Recent and Future Climate Change in Northwest China. Clim. Change 2006, 80, 379–393. [Google Scholar] [CrossRef]
- Fang, K.; Gou, X.; Chen, F.; Peng, J.; D’Arrigo, R.; Wright, W.; Li, M.-H. Response of regional tree-line forests to climate change: Evidence from the northeastern Tibetan Plateau. Trees 2009, 23, 1321–1329. [Google Scholar] [CrossRef]
- Gao, L.; Gou, X.; Deng, Y.; Wang, Z.; Gu, F.; Wang, F. Increased growth of Qinghai spruce in northwestern China during the recent warming hiatus. Agric. For. Meteorol. 2018, 260–261, 9–16. [Google Scholar] [CrossRef]
- Gou, X.; Gao, L.; Deng, Y.; Chen, F.; Yang, M.; Still, C. An 850-year tree-ring-based reconstruction of drought history in the western Qilian Mountains of northwestern China. Int. J. Clim. 2015, 35, 3308–3319. [Google Scholar] [CrossRef]
- Cao, B.; Bai, C.; Xue, Y.; Yang, J.; Gao, P.; Liang, H.; Zhang, L.; Che, L.; Wang, J.; Xu, J.; et al. Wetlands rise and fall: Six endangered wetland species showed different patterns of habitat shift under future climate change. Sci. Total. Environ. 2020, 731, 138518. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Liu, T.; Li, L.; Zhao, Y.; Pei, L.; Zhao, J. Predicting the Potential Distribution of Polygala tenuifolia Willd. under Climate Change in China. PLoS ONE 2016, 11, e0163718. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Y.; Chang, H.; Liu, T.; Zhang, C. The potential geographical distribution of Haloxylon across Central Asia under climate change in the 21st century. Agric. For. Meteorol. 2019, 275, 243–254. [Google Scholar] [CrossRef]
- He, X.; Burgess, K.S.; Gao, L.-M.; Li, D.-Z. Distributional responses to climate change for alpine species of Cyananthus and Primula endemic to the Himalaya-Hengduan Mountains. Plant Divers. 2019, 41, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Xie, L.; Wang, H.; Zhong, J.; Li, Y.; Liu, J.; Ou, Z.; Liang, X.; Li, Y.; Huang, H.; et al. Geographic distribution and impacts of climate change on the suitable habitats of Zingiber species in China. Ind. Crop. Prod. 2019, 138, 111429. [Google Scholar] [CrossRef]
- Gray, L.K.; Hamann, A. Tracking suitable habitat for tree populations under climate change in western North America. Clim. Change 2012, 117, 289–303. [Google Scholar] [CrossRef]
- Prieto-Torres, D.; Navarro-Sigüenza, A.G.; Santiago-Alarcon, D.; Rojas-Soto, O.R. Response of the endangered tropical dry forests to climate change and the role of Mexican Protected Areas for their conservation. Glob. Change Biol. 2016, 22, 364–379. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, Y.; Zang, Z.; Deng, S.; Lan, T.; Xie, Z.; Xiong, G.; Li, J.; Shen, G. Climate warming has changed phenology and compressed the climatically suitable habitat of Metasequoia glyptostroboides over the last half century. Glob. Ecol. Conserv. 2020, 23, e01140. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Tsang, E.P.K.; Cui, M.-Y.; Chen, X.-Y. Too early to call it success: An evaluation of the natural regeneration of the endangered Metasequoia glyptostroboides. Biol. Conserv. 2012, 150, 1–4. [Google Scholar] [CrossRef]
- Vila, M.; Hulme, P.E. Impact of Biological Invasions on Ecosystem Services; Springer: Cham, Switzerland, 2017; pp. 1–14. [Google Scholar] [CrossRef]
- Willis, K.J.; Birks, H.J.B. What Is Natural? The Need for a Long-Term Perspective in Biodiversity Conservation. Science 2006, 314, 1261–1265. [Google Scholar] [CrossRef] [Green Version]
- Colautti, R.I.; Barrett, S.C.H. Rapid Adaptation to Climate Facilitates Range Expansion of an Invasive Plant. Science 2013, 342, 364–366. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Q.H.; Wu, J.Y.; Huang, D.; Zhang, W.H.; Zhao, N.; Li, X.F.; Wang, L.X. Historical introduction, geographical distribution, and biological characteristics of alien plants in China. Biodivers. Conserv. 2017, 26, 353–381. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, Y.; Li, X.; Liu, Z.; Wu, J.; Musa, A.; Ma, Q.; Yu, H.; Cui, X.; Wang, L. Geographical distribution and determining factors of different invasive ranks of alien species across China. Sci. Total Environ. 2020, 722, 137929. [Google Scholar] [CrossRef]
- Guan, B.-C.; Guo, H.-J.; Chen, S.-S.; Li, D.-M.; Liu, X.; Gong, X.; Ge, G. Shifting ranges of eleven invasive alien plants in China in the face of climate change. Ecol. Inform. 2020, 55, 101024. [Google Scholar] [CrossRef]
- Wan, J.; Wang, C.; Tan, J.; Yu, F. Climatic niche divergence and habitat suitability of eight alien invasive weeds in China under climate change. Ecol. Evol. 2017, 7, 1541–1552. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Huang, D.; Wang, Q.H.; Wu, J.Y.; Wang, K. Invasions by alien plant species of the agro-pastoral ecotone in northern China: Species-specific and environmental determinants. J. Nat. Conserv. 2016, 34, 133–144. [Google Scholar] [CrossRef]
- Niu, X.; Wang, S.; Tang, J.; Lee, D.-K.; Gutowski, W.; Dairaku, K.; McGregor, J.; Katzfey, J.; Gao, X.; Wu, J.; et al. Ensemble evaluation and projection of climate extremes in China using RMIP models. Int. J. Clim. 2017, 38, 2039–2055. [Google Scholar] [CrossRef]
- Jay, A.; Reidmiller, D.R.; Avery, C.W.; Barrie, D.; De Angelo, B.J.; Dave, A.; Dzaugis, M.; Kolian, M.; Lewis, K.L.M.; Reeves, K.; et al. Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment; Reidmiller, D.R., Avery, C.W., Easterling, D.R., Kunkel, K.E., Lewis, K.L.M., Maycock, T.K., Stewart, B.C., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2018; pp. 33–71. [Google Scholar]
- Yao, R.; Wang, L.; Huang, X.; Chen, X.; Liu, Z. Increased spatial heterogeneity in vegetation greenness due to vegetation greening in mainland China. Ecol. Indic. 2019, 99, 240–250. [Google Scholar] [CrossRef]
- Tian, H.; Ren, W.; Tao, B.; Sun, G.; Chappelka, A.; Wang, X.; Pan, S.; Yang, J.; Liu, J.; Felzer, B.S.; et al. Climate extremes and ozone pollution: A growing threat to china’s food security. Ecosyst. Health Sustain. 2016, 2, e01203. [Google Scholar] [CrossRef] [Green Version]
- Ren, W.; Tian, H.; Tao, B.; Huang, Y.; Pan, S. China’s crop productivity and soil carbon storage as influenced by multifactor global change. Glob. Change Biol. 2012, 18, 2945–2957. [Google Scholar] [CrossRef]
- Chen, W.; Zhu, D.; Huang, C.; Ciais, P.; Yao, Y.; Friedlingstein, P.; Sitch, S.; Haverd, V.; Jain, A.K.; Kato, E.; et al. Negative extreme events in gross primary productivity and their drivers in China during the past three decades. Agric. For. Meteorol. 2019, 275, 47–58. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, J.; Li, J.; Wang, K.; Lei, L.; Guo, H. The 2010 spring drought reduced primary productivity in southwestern China. Environ. Res. Lett. 2012, 7, 045706. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.; Cai, W.; Chen, Y.; Liu, S.; Dong, W.; Zhang, H.; Yu, G.; Chen, Z.; He, H.; Guo, W.; et al. Severe summer heatwave and drought strongly reduced carbon uptake in Southern China. Sci. Rep. 2016, 6, 18813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, J.; Xiong, G.; Wang, Z.; Zhang, M.; Zhao, C.; Shen, G.; Xu, W.; Xie, Z. Altered dynamics of broad-leaved tree species in a Chinese subtropical montane mixed forest: The role of an anomalous extreme 2008 ice storm episode. Ecol. Evol. 2015, 5, 1484–1493. [Google Scholar] [CrossRef] [PubMed]
- Klamt, A.-M.; Hu, K.; Huang, L.; Chen, X.; Liu, X.; Chen, G. An extreme drought event homogenises the diatom composition of two shallow lakes in southwest China. Ecol. Indic. 2020, 108, 105662. [Google Scholar] [CrossRef]
- Cui, L.; Wang, L.; Singh, R.P.; Lai, Z.; Jiang, L.; Yao, R. Association analysis between spatiotemporal variation of vegetation greenness and precipitation/temperature in the Yangtze River Basin (China). Environ. Sci. Pollut. Res. 2018, 25, 21867–21878. [Google Scholar] [CrossRef]
- Li, S.; Hughes, A.C.; Su, T.; Anberrée, J.L.; Oskolski, A.A.; Sun, M.; Ferguson, D.K.; Zhou, Z.-K. Fire dynamics under monsoonal climate in Yunnan, SW China: Past, present and future. Palaeogeogr. Palaeoclim. Palaeoecol. 2017, 465, 168–176. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, S. Estimation on the response of glaciers in China to the global warming in the 21st century. Chin. Sci. Bull. 2000, 45, 668–672. [Google Scholar] [CrossRef]
- Li, X.Y.; Si, Y.L.; Ji, L.Y.; Gong, P. Dynamic response of East Asian Greater White-fronted Geese to changes of environment during migration: Use of multi-temporal species distribution model. Ecol. Modell. 2017, 360, 70–79. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Xie, H.; Yang, K.; Zhu, L.; Shum, C.; Bolch, T.; Yi, S.; Allen, S.; Jiang, L.; et al. Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth-Sci. Rev. 2020, 208, 103269. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Weiskopf, S.; Rubenstein, M.; Crozier, L.; Gaichas, S.; Griffis, R.; Halofsky, J.; Hyde, K.; Morelli, T.; Morisette, J.; Muñoz, R.; et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ. 2020, 733, 137782. [Google Scholar] [CrossRef] [PubMed]
- Bauhus, J.; van der Meer, P.; Kanninen, M. Ecosystem Goods and Services from Plantation Forests; Earthscan: London, UK, 2010. [Google Scholar]
- Wang, Y.; Shao, M.; Zhu, Y.; Sun, H.; Fang, L. A new index to quantify dried soil layers in water-limited ecosystems: A case study on the Chinese Loess Plateau. Geoderma 2018, 322, 1–11. [Google Scholar] [CrossRef]
- Jia, Y.; Li, T.; Shao, M.; Hao, J.; Wang, Y.; Jia, X.; Zeng, C.; Fu, X.; Liu, B.; Gan, M.; et al. Disentangling the formation and evolvement mechanism of plants-induced dried soil layers on China’s Loess Plateau. Agric. For. Meteorol. 2019, 269–270, 57–70. [Google Scholar] [CrossRef]
- Wu, X.; Wei, Y.; Fu, B.; Wang, S.; Zhao, Y.; Moran, E.F. Evolution and effects of the social-ecological system over a millennium in China’s Loess Plateau. Sci. Adv. 2020, 6, eabc0276. [Google Scholar] [CrossRef]
- Wang, Z.; Ficklin, D.L.; Zhang, Y.; Zhang, M. Impact of climate change on streamflow in the arid Shiyang River Basin of northwest China. Hydrol. Process. 2012, 26, 2733–2744. [Google Scholar] [CrossRef]
- Li, Z.; Deng, X.; Jin, G.; Mohmmed, A.; Arowolo, A.O. Tradeoffs between agricultural production and ecosystem services: A case study in Zhangye, Northwest China. Sci. Total. Environ. 2020, 707, 136032. [Google Scholar] [CrossRef] [PubMed]
- Longyang, Q. Assessing the effects of climate change on water quality of plateau deep-water lake—A study case of Hongfeng Lake. Sci. Total. Environ. 2019, 647, 1518–1530. [Google Scholar] [CrossRef]
- Sumaila, U.R.; Cheung, W.W.L.; Lam, V.W.Y.; Pauly, D.; Herrick, S.F. Climate change impacts on the biophysics and economics of world fisheries. Nat. Clim. Change 2011, 1, 449–456. [Google Scholar] [CrossRef]
- Ding, Q.; Chen, X.; Hilborn, R.; Chen, Y. Vulnerability to impacts of climate change on marine fisheries and food security. Mar. Policy 2017, 83, 55–61. [Google Scholar] [CrossRef]
- Yuan, Z.; Xiao, X.; Wang, F.; Xing, L.; Wang, Z.; Zhang, H.; Xiang, R.; Zhou, L.; Zhao, M. Spatiotemporal temperature variations in the East China Sea shelf during the Holocene in response to surface circulation evolution. Quat. Int. 2018, 482, 46–55. [Google Scholar] [CrossRef]
- Cai, W.; Wang, G.; Santoso, A.; McPhaden, M.J.; Wu, L.; Jin, F.-F.; Timmermann, A.; Collins, M.; Vecchi, G.; Lengaigne, M.; et al. Increased frequency of extreme La Niña events under greenhouse warming. Nat. Clim. Change 2015, 5, 132–137. [Google Scholar] [CrossRef]
- Mori, A.S. Biodiversity and ecosystem services in forests: Management and restoration founded on ecological theory. J. Appl. Ecol. 2017, 54, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Corvalan, C.; Hales, S.; McMichael, A.; Butler, C.; Campbell-Lendrum, D.; Confalonieri, U.; Leitner, K.; Lewis, N.; Patz, J.; Polson, K.; et al. Ecosystems and Human Well-being: Health Synthesis, a Report of the Millennium Ecosystem Assessment. 2005. Available online: https://apps.who.int/iris/handle/10665/43354 (accessed on 8 June 2020).
- Liu, K.; Hou, X.; Ren, Z.; Lowe, R.; Wang, Y.; Li, R.; Liu, X.; Sun, J.; Lu, L.; Song, X.; et al. Climate factors and the East Asian summer monsoon may drive large outbreaks of dengue in China. Environ. Res. 2020, 183, 109190. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China. Bulletin on the State of China’s Ecological Environment in 2019. 2020. Available online: http://english.mee.gov.cn/Resources/Reports/ (accessed on 8 June 2020).
- Ministry of Ecology and Environment of the People’s Republic of China. The policies and actions in response to climate change of China. 2008. Available online: https://english.mee.gov.cn/Resources/Reports/reports/201912/P020191204495763994956.pdf (accessed on 3 November 2020).
- Wu, X.; Fang, H.; Zhao, L.; Wu, T.; Li, R.; Ren, Z.; Pang, Q.; Ding, Y. Mineralisation and Changes in the Fractions of Soil Organic Matter in Soils of the Permafrost Region, Qinghai-Tibet Plateau, China. Permafr. Periglac. Process. 2014, 25, 35–44. [Google Scholar] [CrossRef]
- Mu, C.; Zhang, T.; Wu, Q.; Peng, X.; Cao, B.; Zhang, X.; Cheng, G. Editorial: Organic carbon pools in permafrost regions on the Qinghai–Xizang (Tibetan) Plateau. Cryosphere 2015, 9, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Schuur, E.A.G.; McGuire, A.D.; Schadel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef]
- Ye, C.; Shen, Z.; Zhang, T.; Fan, M.; Lei, Y.; Zhang, J. Long-term joint effect of nutrients and temperature increase on algal growth in Lake Taihu, China. J. Environ. Sci. 2011, 23, 222–227. [Google Scholar] [CrossRef]
- Chen, F.; Zhou, Z.; Xiao, R.; Wang, P.; Li, H.; Guo, E. Estimation of ecosystem services of urban green-land in the workshop area of the Wuhan Iron and Steel Company. Acta Ecol. Sin. 2006, 26, 2229–2236. (In Chinese) [Google Scholar]
- Jim, C.; Chen, W.Y. Ecosystem services and valuation of urban forests in China. Cities 2009, 26, 187–194. [Google Scholar] [CrossRef]
- Ament, J.M.; Moore, C.A.; Herbst, M.; Cumming, G. Cultural Ecosystem Services in Protected Areas: Understanding Bundles, Trade-Offs, and Synergies. Conserv. Lett. 2016, 10, 440–450. [Google Scholar] [CrossRef]
- Runting, R.K.; Bryan, B.; Dee, L.E.; Maseyk, F.J.F.; Mandle, L.; Hamel, P.; Wilson, K.A.; Yetka, K.; Possingham, H.; Rhodes, J.R. Incorporating climate change into ecosystem service assessments and decisions: A review. Glob. Change Biol. 2017, 23, 28–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernstein, A.S. Biological Diversity and Public Health. Annu. Rev. Public Health 2014, 35, 153–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haahtela, T.; Holgate, S.; Pawankar, R.; Akdis, C.A.; Benjaponpitak, S.; Caraballo, L.; Demain, J.; Portnoy, J.; von Hertzen, L. The biodiversity hypothesis and allergic disease: World allergy organization position statement. World Allergy Organ. J. 2013, 6, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Obradovich, N.; Migliorini, R.; Paulus, M.P.; Rahwan, I. Empirical evidence of mental health risks posed by climate change. Proc. Natl. Acad. Sci. USA 2018, 115, 10953–10958. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zheng, H.; Li, S.; Chen, X.; Li, J.; Zeng, W.; Liang, Y.; Polasky, S.; Feldman, M.W.; Ruckelshaus, M.; et al. Impacts of conservation and human development policy across stakeholders and scales. Proc. Natl. Acad. Sci. USA 2015, 112, 7396–7401. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Fu, B.; Feng, X.; Hou, G.; Liu, Y.; Wang, X. The tradeoff and synergy between ecosystem services in the Grain-for-Green areas in Northern Shaanxi, China. Ecol. Indic. 2014, 43, 103–113. [Google Scholar] [CrossRef]
- Cao, S.; Chen, L.; Shankman, D.; Wang, C.; Wang, X.; Zhang, H. Excessive reliance on afforestation in China’s arid and semi-arid regions: Lessons in ecological restoration. Earth-Sci. Rev. 2011, 104, 240–245. [Google Scholar] [CrossRef]
- De Keersmaecker, W.; Lhermitte, S.; Tits, L.; Honnay, O.; Somers, B.; Coppin, P. A model quantifying global vegetation resistance and resilience to short-term climate anomalies and their relationship with vegetation cover. Glob. Ecol. Biogeogr. 2015, 24, 539–548. [Google Scholar] [CrossRef]
- Oliver, T.H.; Heard, M.S.; Isaac, N.J.; Roy, D.B.; Procter, D.; Eigenbrod, F.; Freckleton, R.; Hector, A.; Orme, C.D.L.; Petchey, O.; et al. Biodiversity and Resilience of Ecosystem Functions. Trends Ecol. Evol. 2015, 30, 673–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaury, E.M.; Fusco, E.J.; Jackson, M.R.; Laginhas, B.B.; Morelli, T.L.; Allen, J.M.; Pasquarella, V.J.; Bradley, B.A. Incorpo-rating climate change into invasive species management: Insights from managers. Biol. Invasions 2020, 22, 233–252. [Google Scholar] [CrossRef] [Green Version]
- National Forestry and Grassland Administration and National Park Administration. Integrate Nature Reserves into the Scope of National Parks, and Unified Management, Overall Protection and Systematic Restoration are Implemented to Promote the Integration of Habitat Patches and Enhance the Integrity and Authenticity Protection of Natural Ecosystems, and Enhance the Ability to Addressing Climate Change. 2019. Available online: http://www.forestry.gov.cn/ (accessed on 4 November 2020).
- Wang, F.; Yue, X.; Wang, L.; Li, H.; Du, Z.; Ming, J.; Li, Z. Applying artificial snowfall to reduce the melting of the Muz Taw Glacier, Sawir Mountains. Cryosphere 2020, 14, 2597–2606. [Google Scholar] [CrossRef]
- National Development and Reform Commission. The Northwest Regional Weather Modification Project-Qilian Mountain Topo-graphic Cloud Artificial Precipitation (Snow) Technology Research Project. 2017. Available online: https://www.ndrc.gov.cn/ (accessed on 22 February 2020).
- Feng, Z.; Tan, G.; Xia, J.; Shu, C.; Chen, P.; Wu, M.; Wu, X. Dynamics of mangrove forests in Shenzhen Bay in response to natural and anthropogenic factors from 1988 to 2017. J. Hydrol. 2020, 591, 125271. [Google Scholar] [CrossRef]
- Giri, C.; Pengra, B.; Zhu, Z.; Singh, A.; Tieszen, L.L. Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuarine Coast. Shelf Sci. 2007, 73, 91–100. [Google Scholar] [CrossRef]
- Feagin, R.A.; Barbier, E.B.; Koch, E.W.; Silliman, B.R.; Hacker, S.D.; Wolanski, E.; Primavera, J.H.; Granek, E.F.; Polasky, S.; Aswani, S.; et al. Vegetation’s Role in Coastal Protection. Science 2008, 320, 176–177. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Jin, N.; Yu, Q. Impacts of climate change and crop management practices on soybean phenology changes in China. Sci. Total. Environ. 2020, 707, 135638. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China. The Population of Wild Animals Continues to Rising in San Jiang Yuan. 2015. Available online: http://www.mee.gov.cn/ (accessed on 13 May 2019).
- Ministry of Natural Resources of the People’s Republic of China. The Overall Plan for the Construction of the Natural Resources Survey and Monitoring System. 2020. Available online: http://www.mnr.gov.cn/ (accessed on 1 August 2020).
- Kemp, K.B.; Blades, J.J.; Klos, P.Z.; Hall, T.E.; Force, J.E.; Morgan, P.; Tinkham, W.T. Managing for climate change on federal lands of the western United States: Perceived usefulness of climate science, effectiveness of adaptation strategies, and barriers to implementation. Ecol. Soc. 2015, 20, 17. [Google Scholar] [CrossRef] [Green Version]
Government Department | Government Documents | Time |
---|---|---|
Office of the National Climate Change Coordination Group | National Communication on Climate Change of the People’s Republic of China (I) | 2004 |
Ministry of Science and Technology, China Meteorological Administration, Chinese Academy of Sciences, etc. | China’s National Assessment Report on Climate Change (I) | 2007 |
Ministry of Science and Technology, National Development and Reform Commission, etc. | China’s Special Science and Technology Action on Climate Change | 2007 |
National Development and Reform Commission, Ministry of Science and Technology, etc. | China’s National Climate Change Program | 2008 |
Office of the National Climate Change Coordination Group | National Communication on Climate Change of the People’s Republic of China (II) | 2012 |
Ministry of Science and Technology, China Meteorological Administration, Chinese Academy of Sciences, etc. | China’s National Assessment Report on Climate Change (II) | 2011 |
Ministry of Science and Technology, Chinese Academy of Sciences, Chinese Academy of Engineering, etc. | China’s National Assessment Report on Climate Change (III) | 2014 |
Ministry of Science and Technology, Chinese Academy of Sciences, Chinese Academy of Engineering, etc. | China’s National Assessment Report on Climate Change (Ⅳ) | 2020 |
Office of the National Climate Change Coordination Group | National Communication on Climate Change of the People’s Republic of China (III) | 2018 |
China Meteorological Administration | Blue Book on Climate Change in China | 2020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Gou, X.; Yin, D. Response of Biodiversity, Ecosystems, and Ecosystem Services to Climate Change in China: A Review. Ecologies 2021, 2, 313-331. https://doi.org/10.3390/ecologies2040018
Yang H, Gou X, Yin D. Response of Biodiversity, Ecosystems, and Ecosystem Services to Climate Change in China: A Review. Ecologies. 2021; 2(4):313-331. https://doi.org/10.3390/ecologies2040018
Chicago/Turabian StyleYang, Haijiang, Xiaohua Gou, and Dingcai Yin. 2021. "Response of Biodiversity, Ecosystems, and Ecosystem Services to Climate Change in China: A Review" Ecologies 2, no. 4: 313-331. https://doi.org/10.3390/ecologies2040018
APA StyleYang, H., Gou, X., & Yin, D. (2021). Response of Biodiversity, Ecosystems, and Ecosystem Services to Climate Change in China: A Review. Ecologies, 2(4), 313-331. https://doi.org/10.3390/ecologies2040018