Ecotoxicological Evaluation of Products Obtained from Technical Cashew Nutshell Liquid (tCNSL) Proposed as Larvicide to Control Aedes aegypti (Diptera: Culicidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Tested Products
2.2. Ecotoxicological Tests
2.2.1. Pseudokirchneriella subcapitata Growth Inhibition Test
2.2.2. Daphnia similis Acute Toxicity Test
2.2.3. Oreochromis niloticus Acute Toxicity Test
2.3. Allium cepa Phytotoxicity, Cytotoxicity, and Genotoxicity Tests
2.4. O. niloticus Genotoxicity Test
2.5. Salmonella/Microsome Assay
2.6. Ecotoxicological Evaluation and Statistical Analysis
2.7. Classification of Acute Toxicity of the Larvicides Recommended by WHO and the tCNSL + NatCNSLS Mixture Emulsion
3. Results and Discussion
3.1. Acute Toxicity Evaluation with P. subcapitata, D. similis, and O. niloticus
3.2. Phytotoxicity, Cytotoxicity, and Genotoxicity Evaluation with A. cepa
3.3. Genotoxicity Evaluation with O. niloticus
3.4. Salmonella/microsome Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benelli, G. Research in mosquito control: Current challenges for a brighter future. Parasitol. Res. 2015, 114, 2801–2805. [Google Scholar] [CrossRef]
- Bardach, A.E.; García-Perdomo, H.A.; Alcaraz, A.; López, E.T.; Gándara, R.A.R.; Ruvinsky, S.; Ciapponi, A. Interventions for the control of Aedes aegypti in Latin America and the Caribbean: Systematic review and meta-analysis. Trop. Med. Int. Health 2019, 24, 530–552. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Garcia, G.D.A.; David, M.R.; Martins, A.; Maciel-De-Freitas, R.; Linss, J.G.B.; Araújo, S.C.; Lima, J.B.P.; Valle, D. The impact of insecticide applications on the dynamics of resistance: The case of four Aedes aegypti populations from different Brazilian regions. PLOS Negl. Trop. Dis. 2018, 12, e0006227. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Jeffries, C.; Walker, T. Biological control of mosquito vectors: Past, present, and future. Insects 2016, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, D.; Lefèvre, T.; Moiroux, N.; Pennetier, C.; Chandre, F.; Cohuet, A. Behavioural adaptations of mosquito vectors to insecticide control. Curr. Opin. Insect Sci. 2019, 34, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, M.; Benelli, G. Eco-friendly larvicides from Indian plants: Effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors. Ecotoxicol. Environ. Saf. 2016, 133, 395–402. [Google Scholar] [CrossRef]
- Pandiyan, G.N.; Mathew, N.; Munusamy, S. Larvicidal activity of selected essential oil in synergized combinations against Aedes aegypti. Ecotoxicol. Environ. Saf. 2019, 174, 549–556. [Google Scholar] [CrossRef]
- Jorge, M.R.; Crispim, B.D.A.; Merey, F.M.; Barufatti, A.; Cabrini, I.; Dantas, F.G.D.S.; De Oliveira, K.M.P.; Kummrow, F.; Beatriz, A.; Santos, T.; et al. Sulphonates’ mixtures and emulsions obtained from technical cashew nut shell liquid and cardanol for control of Aedes aegypti (Diptera: Culicidae). Environ. Sci. Pollut. Res. 2020, 27, 27870–27884. [Google Scholar] [CrossRef]
- WHO-World Health Organization Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control. 2009. Available online: https://apps.who.int/iris/bitstream/handle/10665/44188/9789241547871_eng.pdf?sequence=1&isAllowed=y (accessed on 10 June 2020).
- Mubofu, E.B.; Mgaya, J.E. Chemical Valorization of Cashew Nut Shell Waste. Top. Curr. Chem. 2018, 376, 8. [Google Scholar] [CrossRef]
- Roy, A.; Fajardie, P.; Lepoittevin, B.; Baudoux, J.; Lapinte, V.; Caillol, S.; Briou, B. CNSL, a Promising Building Blocks for Sustainable Molecular Design of Surfactants: A Critical Review. Molecules 2022, 27, 1443. [Google Scholar] [CrossRef] [PubMed]
- Lomonaco, D.; Mele, G.; Mazzetto, S.E. Cashew Nutshell Liquid (CNSL): From an Agro-industrial Waste to a Sustainable Alternative to Petrochemical Resources. In Cashew Nut Shell Liquid; Anilkumar, P., Ed.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Matos, J.E.X.; Silva, F.J.A.; Vieira, P.B. Solventes para extração do líquido da castanha de caju (LCC) e compatibilidade ambiental. Rev. Technol. 2008, 29, 101–109. Available online: https://periodicos.unifor.br/tec/article/view/49 (accessed on 12 June 2020).
- Lomonaco, D.; Santiago, G.M.P.; Ferreira, Y.S.; Arriaga, M.C.; Mazzetto, S.E.; Mele, G.; Vasapollo, G. Study of technical CNSL and its main components as new green larvicides. Green Chem. 2009, 11, 31–33. [Google Scholar] [CrossRef]
- Balachandran, V.S.; Jadhav, S.R.; Vemula, P.K.; John, G. Recent advances in cardanol chemistry in a nutshell: From a nut to nanomaterials. Chem. Soc. Rev. 2013, 42, 427–438. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, G.H.F.; de Andrade, M.A.; de Araújo, C.N.; Santos, M.L.; de Castro, N.A.; Charneau, S.; Monnerat, R.; de Santana, J.M.; Bastos, I.M.D. Larvicidal and pupicidal activities of eco-friendly phenolic lipid products from Anacardium occidentale nutshell against arbovirus vectors. Environ. Sci. Pollut. Res. 2019, 26, 5514–5523. [Google Scholar] [CrossRef] [Green Version]
- Mgaya, J.; Shombe, G.B.; Masikane, S.C.; Mlowe, S.; Mubofu, E.B.; Revaprasadu, N. Cashew nut shell: A potential bio-resource for the production of bio-sourced chemicals, materials and fuels. Green Chem. 2019, 21, 1186–1201. [Google Scholar] [CrossRef]
- Quirino, R.L.; Garrison, T.F.; Kessler, M.R. Matrices from vegetable oils, cashew nut shell liquid, and other relevant systems for biocomposite applications. Green Chem. 2014, 16, 1700–1715. [Google Scholar] [CrossRef] [Green Version]
- Lillicrap, A.; Belanger, S.; Burden, N.; Du Pasquier, D.; Embry, M.R.; Halder, M.; Lampi, M.; Lee, L.; Norberg-King, T.; Rattner, B.A.; et al. Alternative approaches to vertebrate ecotoxicity tests in the 21st century: A review of developments over the last 2 decades and current status. Environ. Toxicol. Chem. 2016, 35, 2637–2646. [Google Scholar] [CrossRef]
- Topping, C.J.; Aldrich, A.; Berny, P. Overhaul environmental risk assessment for pesticides. Science 2020, 367, 360–363. [Google Scholar] [CrossRef]
- Rudén, C.; Adams, J.; Ågerstrand, M.; Brock, T.C.; Poulsen, V.; E Schlekat, C.; Wheeler, J.; Henry, T.R. Assessing the relevance of ecotoxicological studies for regulatory decision making. Integr. Environ. Assess. Manag. 2016, 13, 652–663. [Google Scholar] [CrossRef]
- Mazzetto, S.E.; Lomonaco, D.; Mele, G. Óleo da castanha de caju: Oportunidades e desafios no contexto do desenvolvimento e sustentabilidade industrial. Química Nova 2009, 32, 732–741. [Google Scholar] [CrossRef] [Green Version]
- CASHOL–Resibras: Renewable and Sustainable Solutions in Cashol® Products. 2022. Available online: https://cashol.com.br/2017/?lang=en#materiais (accessed on 28 April 2022).
- ABNT-Associação Brasileira de Normas Técnicas-NBR 12648; Aquatic Ecotoxicology–Chronic Toxicity–Test with Algae (Chlorophyceae). Brazilian Association of Technique Standards: São Paulo, Brazil, 2018; p. 27.
- OECD-Organisation for Economic Cooperation and Development. Test no. 201: Freshwater alga and cyanobacteria, growth inhibition test. OECD Guidel. Test. Chem. 2001, 1, 1–22. [Google Scholar] [CrossRef] [Green Version]
- ABNT-Associação Brasileira de Normas Técnicas-ABNT NBR 12713; Aquatic Ecotoxicology-Acute Toxicity-Bioassay Methodology with Daphnia spp. (Crustacea, Cladocera). Brazilian Association of Technique Standards: São Paulo, Brazil, 2016; p. 27.
- OECD-Organisation for Economic Cooperation and Development. Test No. 202: Daphnia sp. Acute Immobilisation Test. In Guidelines for the Testing of Chemicals; Section 2; OECD Publishing: Paris, France, 2004; pp. 1–12. [Google Scholar] [CrossRef]
- ABNT-Associação Brasileira de Normas Técnicas-NBR 15088; Aquatic Ecotoxicology-Acute Toxicity-Test with Fish (Cyprinidae). Brazilian Association of Technique Standards: São Paulo, Brazil, 2016; p. 25.
- OECD-Organisation for Economic Cooperation and Development. Test no. 203: Fish, acute toxicity testing. In OECD Guideline for Testing Chemicals; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef]
- Fiskesjö, G. The Allium test—An alternative in environmental studies: The relative toxicity of metal ions. Mutat. Res. 1988, 197, 243–260. [Google Scholar] [CrossRef]
- Franscisco, L.F.V.; Crispim, B.D.A.; Viana, L.F.; Nascimento, H.D.S.; Junior, J.L.R.; Grisolia, A.B. Cytotoxicity, Genotoxicity and Mutagenicity of Aluminum, Manganese and Lead in Meristematic Cells of Root Allium cepa. Orbital: Electron. J. Chem. 2018, 10, 60–65. [Google Scholar] [CrossRef]
- Carrasco, K.R.; Tilbury, K.L.; Myers, M.S. Assessment of the Piscine Micronucleus Test as an in situ Biological indicator of Chemical Contaminant Effects. Can. J. Fish. Aquat. Sci. 1990, 47, 2123–2136. [Google Scholar] [CrossRef]
- Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988, 175, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Kado, N.Y.; Langley, D.; Eisenstadt, E. A simple modification of the Salmonella liquid-incubation assay Increased sensitivity for detecting mutagens in human urine. Mutat. Res. Lett. 1983, 121, 25–32. [Google Scholar] [CrossRef]
- Norberg-King, T.J. A linear interpolation method for sublethal toxicity: The inhibition concentration (ICp) approach. Natl. Effl. Toxic. Assess. Cent. Tech. Rep. 1993, 39, 3–93. [Google Scholar]
- Hamilton, M.A.; Russo, R.C.; Thurston, R.V. Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 1977, 11, 714–719. [Google Scholar] [CrossRef]
- Costa, C.R.; Olivi, P.; Botta, C.M.R.; Espindola, E.L.G. A toxicidade em ambientes aquáticos: Discussão e métodos de avaliação. Química Nova 2008, 31, 1820–1830. [Google Scholar] [CrossRef] [Green Version]
- OECD-Organisation for Economic Cooperation and Development. OECD Harmonised Integrated Classification System for Human Health and Environmental Hazards of Chemical Substances and Mixtures; OECD Series on Testing and Assessment, No. 33; OECD Publishing: Paris, France, 2002. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R foundation for Statistical Computing: Vienna, Austria, 2021; Available online: http://www.R-project.org (accessed on 15 June 2020).
- Paiva, D.R.; De Lima, D.P.; Avvari, N.P.; De Arruda, E.J.; Cabrini, I.; Marques, M.R.; Dos Santos, E.A.; Biaggio, F.C.; Sangi, D.P.; Beatriz, A. A potent larvicidal agent against Aedes aegypti mosquito from cardanol. An. Acad. Bras. Ciênc. 2017, 89, 373–382. [Google Scholar] [CrossRef] [Green Version]
- Leite, A.D.S.; Dantas, A.F.; Oliveira, G.L.D.S.; Júnior, A.L.G.; de Lima, S.G.; Citó, A.M.D.G.L.; de Freitas, R.M.; Melo-Cavalcante, A.A.D.C.; Lopes, J.A.D. Evaluation of Toxic, Cytotoxic, Mutagenic, and Antimutagenic Activities of Natural and Technical Cashew Nut Shell Liquids Using the Allium cepa and Artemia salina Bioassays. BioMed Res. Int. 2015, 2015, 626835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO-World Health Organization. Who Specifications and Evaluations for Public Health Pesticides Diflubenzuron 1-(4-chlorophenyl)-3-(2,6-difluorobenzoyl)urea. 2017. Available online: https://extranet.who.int/pqweb/sites/default/files/vcp-documents/WHOVC-SP_Diflubenzuron_2020.pdf (accessed on 25 June 2020).
- WHO-World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; WHO: Geneva, Switzerland, 2017; Available online: https://www.who.int/water_sanitation_health/publications/drinking-water-quality-guidelines-4-including-1st-addendum/en/ (accessed on 20 June 2020).
- Roman, P. History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects–a review. Plant Prot. Sci. 2016, 52, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Matias, R.; Rosa, A.C.; Oliveira, A.K.M.; Pereira, K.C.L.; Rizzi, E.S.; Machado, A.A. Cashew nut shell liquid and formulation: Toxicity during the germination of lettuce, tomato seeds and coffee senna and seedling formation. Acta Sci. Agron. 2017, 39, 487–495. [Google Scholar] [CrossRef] [Green Version]
- Hussain, B.; Sultana, T.; Sultana, S.; Masoud, M.S.; Ahmed, Z.; Mahboob, S. Fish eco-genotoxicology: Comet and micronucleus assay in fish erythrocytes as in situ biomarker of freshwater pollution. Saudi J. Biol. Sci. 2018, 25, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Benze, T.P.; Sakuragui, M.M.; Zago, L.H.D.P.; Fernandes, M.N. Subchronic exposure to diflubenzuron causes health disorders in neotropical freshwater fish, Prochilodus lineatus. Environ. Toxicol. 2016, 31, 533–542. [Google Scholar] [CrossRef]
- Maharajan, K.; Muthulakshmi, S.; Nataraj, B.; Ramesh, M.; Kadirvelu, K. Toxicity assessment of pyriproxyfen in vertebrate model zebrafish embryos (Danio rerio): A multi biomarker study. Aquat. Toxicol. 2018, 196, 132–145. [Google Scholar] [CrossRef]
- Pereira, B.B.; Júnior, E.O.D.C. Enzymatic Alterations and Genotoxic Effects Produced by Sublethal Concentrations of Organophosphorous Temephos in Poecilia reticulata. J. Toxicol. Environ. Health Part A 2015, 78, 1033–1037. [Google Scholar] [CrossRef]
- Corvi, R.; Madia, F. In vitro genotoxicity testing–Can the performance be enhanced? Food Chem. Toxicol. 2017, 106, 600–608. [Google Scholar] [CrossRef]
- USEPA-Environmental Protection Agency. Overview of the Ecological Risk Assessment Process in the Office of Pesticide Programs. Endangered and Threatened Species Effects Determinations; USEPA-Environmental Protection Agency: Washington, DC, USA, 2004; 92p.
- Hansen, S.R.; Garton, R.R. Ability of standard toxicity tests to predict the effects of the insecticide diflubenzuron on laboratory stream communities. Canad. J. Fish. Aquat. Sci. 1982, 39, 1273–1288. [Google Scholar] [CrossRef]
- Kashian, D.R.; Dodson, S.I. Effects of common-use pesticides on developmental and reproductive processes in Daphnia. Toxicol. Ind. Health 2002, 18, 225–235. [Google Scholar] [CrossRef]
- Abe, F.R.; Coleone, A.C.; Machado, A.A.; Gonçalves Machado-Neto, J. Ecotoxicity and environmental risk assessment of larvicides used in the control of Aedes aegypti to Daphnia magna (Crustacea. Cladocera). J. Toxicol. Environ. Health Part A 2014, 77, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, C.M.; Silva, M.S.G.M.; de MACEDO, V.S.; Dantzger, D.D.; Vallim, J.H.; Marigo, A.L.S.; Aoyama, H. Prediction of a low-risk concentration of diflubenzuron to aquatic organisms and evaluation of clay and gravel in reducing the toxicity Pan-Am. J. Aquat. Sci. 2015, 10, 259–272. [Google Scholar]
- USEPA-Environmental Protection Agency. Preliminary Risk Assessment to Support the Registration Review of Diflubenzuron; Office of Pesticide Programs, Environmental Fate and Effects Division: Washington, DC, USA, 2018.
- USEPA-Environmental Protection Agency. Reregistration Eligibility Decision (RED) Diflubenzuron; EPA 738–R–97–008; Office of Pesticide Programs, Environmental Fate and Effects Division: Washington, DC, USA, 1997.
- Abe, F.R.; Machado, A.A.; Coleone, A.C.; da Cruz, C.; Machado-Neto, J.G. Toxicity of Diflubenzuron and Temephos on Freshwater Fishes: Ecotoxicological Assays with Oreochromis niloticus and Hyphessobrycon eques. Water. Air Soil Poll. 2019, 230, 77. [Google Scholar] [CrossRef]
- Johnson, W.W.; Finley, M.T. Handbook of Acute Toxicity of Chemicals to Fish and Aquatic Invertebrates; U.S. Fish and Wildlife Service, Resource Publication 137: Washington, DC, USA, 1980.
- Mayer, F.L.; Ellersieck, M.R. Manual of Acute Toxicity: Interpretation and Data Base for 410 Chemicals and 66 Species of Freshwater Animals; United States Department of the Interior, U.S. Fish and Wildlife Service, Resource Publication 160: Washington, DC, USA, 1986. Available online: http://www.cerc.usgs.gov/data/acute/acute.html (accessed on 26 June 2020).
- PPDB–Pesticide Properties DataBase. 2012. Available online: http://sitem.herts.ac.uk/aeru/ppdb/ (accessed on 27 June 2020).
- WHO-World Health Organization. Who Specifications and Evaluations for Public Health Pesticides Novaluron, (±)-1-[3-chloro-4-(1,1,2-trifluoro-2-trifluoromethoxyethoxy)phenyl]-3-(2,6-difluorobenzoyl)urea. 2004. Available online: https://extranet.who.int/pqweb/sites/default/files/vcp-documents/WHOVC-SP_Novaluron_2004.pdf (accessed on 25 June 2020).
- Nagaraju, B.; Rathnamma, V.V.; Somaiah, K. Median lethal concentrations of novaluron and its effect on behavioral changes in freshwater fish Ctenopharyngodon idella. Adv. Agric. Sci. Eng. Res. 2013, 3, 1249–1257. [Google Scholar]
- Nagaraju, B.; Sudhakar, P.; Anitha, A.; Haribabu, G.; Rathnamma, V.V. Toxicity evaluation and behavioral studies of fresh water fish Labeorohita exposed to Rimon. Int. J. Pharm. Biomed. Sci. 2011, 2, 722–727. [Google Scholar]
- WHO-World Health Organization. Who Specifications and Evaluations for Public Health Pesticides Pirimiphos-Methyl, O-2-diethylamino-6-methylpyrimidin-4-yl-O,Odimethyl phosphorothioate. 2016. Available online: https://extranet.who.int/pqweb/sites/default/files/vcp-documents/WHOVC-SP_Pirimiphos-methyl_2016.pdf (accessed on 28 June 2020).
- DAR-Draft Assessment Report Etofenprox. 2005. Available online: http://dar.efsa.europa.eu/darweb/provision (accessed on 28 June 2020).
- Pérez, S.; Rial, D.; Beiras, R. Acute toxicity of selected organic pollutants to saltwater (mysid Siriella armata) and freshwater (cladoceran Daphnia magna) ecotoxicological models. Ecotoxicology 2015, 24, 1229–1238. [Google Scholar] [CrossRef]
- European Commision. Initial Risk Assessment Provided by the Rapporteur Member State United Kingdom for the Existing Active Substance Pirimiphos-Methyl of the Second Stage of the Review Programme; Annex B, B.9, Article 8(2) of Council Directive 91/414/EEC; European Commision: Brussels, Belgium, 2006; Volume 3. [Google Scholar]
- USEPA-Environmental Protection Agency. EFED RED Chapter for Diazinon; Case no. 818962; Office of Prevention, Pesticides and Toxic Substances, USEPA-Environmental Protection Agency: Washington, DC, USA, 1999.
- Lawal, M.O.; Samuel, O.B. Investigation of Acute Toxicity of Pirimiphos-Methy] l (Actellic, 25% EC) on Guppy (Poecilia reticulata, Peters, 1859). Pak. J. Biol. Sci. 2010, 13, 405–408. [Google Scholar]
- Mhadhbi, L.; Beiras, R. Acute toxicity of seven selected pesticides (alachlor, atrazine, dieldrin, diuron, pirimiphos-methyl, chlorpyrifos, diazinon) to the marine fish (turbot, Psetta maxima). Water Air Soil Pollut. 2012, 223, 5917–5930. [Google Scholar] [CrossRef]
- Brown, M.D.; Thomas, D.; Kay, B.H. Acute toxicity of selected pesticides to the pacific blue-eye, Pseudomugil signifier (Pisces). J. Am. Mosq. Control Assoc. 1998, 14, 463–466. [Google Scholar]
- USEPA-Environmental Protection Agency. 1996. Available online: https://archive.epa.gov/pesticides/chemicalsearch/chemical/foia/web/pdf/129032/129032-040.pdf (accessed on 28 June 2020).
- Afsset, A.; Assessment, R. La Lutte Antivectorielle dans le Cadre de L’épidémie de Chikungunya sur l’Île de la Réunion: Évaluation des Risques et de L’efficacité des Produits Larvicides; Maisons-Alfort: Paris, France, 2007. [Google Scholar]
- Trayler, K.M.; Davis, J.A. Sensitivity of Daphnia carinata sensu lato to the insect growth regulator, pyriproxyfen. Ecotoxicol. Environ. Saf. 1996, 33, 154–156. [Google Scholar] [CrossRef]
- Vieira-Santos, S.V.; Caixeta, E.S.; Campos-Junior, E.O.; Pereira, B.B. Ecotoxicological effects of larvicide used in the control of Aedes aegypti on nontarget organisms: Redefining the use of piriproxifeno. J. Toxicol. Environ. Health Part A 2017, 80, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Antczak, P.; Jo, H.J.; Woo, S.; Scanlan, L.; Poynton, H.; Loguinov, A.; Chan, S.; Falciani, F.; Vulpe, C. Molecular toxicity identification evaluation (mTIE) approach predicts chemical exposure in Daphnia magna. Environ. Sci. Technol. 2013, 47, 11747–11756. [Google Scholar] [CrossRef] [PubMed]
- Horie, Y.; Yamagishi, T.; Takahashi, H.; Shintaku, Y.; Iguchi, T.; Tatarazako, N. Assessment of the lethal and sublethal effects of 20 environmental chemicals in zebrafish embryos and larvae by using OECD TG 212. J. Appl. Toxicol. 2017, 37, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
- Caixeta, E.S.; Silva, C.F.; Santos, V.S.; Campos Junior, E.O.; Pereira, B.B. Ecotoxicological assessment of pyriproxyfen under environmentally realistic exposure conditions of integrated vector management for Aedes aegypti control in Brazil. J. Toxicol. Environ. Health A 2016, 79, 799–803. [Google Scholar] [CrossRef]
- WHO-World Health Organization. Who Specifications and Evaluations for Public Health Pesticides Temephos, O,O,O′O′-tetramethyl O,O′-thiodi-p-phenylene bis(phosphorothioate). 2010. Available online: https://extranet.who.int/pqweb/sites/default/files/vcp-documents/WHOVC-SP_Temephos_2010.pdf (accessed on 28 June 2020).
- Helgen, J.C.; Larson, N.J.; Anderson, R.L. Responses of zooplankton and Chaoborus to temephos in a natural pond and in the laboratory. Arch. Environ. Contam. Toxicol. 1988, 17, 459–471. [Google Scholar] [CrossRef]
- Goodyear, J.J.; Evans, W.; Parker, R. Organophosphate Pesticides: Documents of Temephos (Revised Environmental Fate and Effects Assessment, Released 10/06/99); Office of Pesticide Programs, US Environmental Protection Agency (US EPA): Washington, DC, USA, 1999.
- Leboulanger, C.; Schwartz, C.; Somville, P.; Diallo, A.O.; Pagano, M. Sensitivity of two Mesocyclops (Crustacea, Copepoda, Cyclopidae), from tropical and temperate origins, to the herbicides, diuron and paraquat, and the insecticides, temephos and fenitrothion. Bull. Environ. Contam. Toxicol. 2011, 87, 487. [Google Scholar] [CrossRef]
- Mayer, F.L. Acute Toxicity Handbook of Chemicals to Estuarine Organisms; Environmental Research Laboratory: Gulf Breeze, FL, USA, 1987; p. 283. [Google Scholar]
- Crivelenti, L.Z.; Guilherme, L.C.; Morelli, S.; Borin, S. Toxicidade do inseticida Organofosforado Abate® em alevinos de Poecilia reticulata. J. Braz. Soc. Ecotoxicol. 2010, 5, 1–13. [Google Scholar] [CrossRef]
- Selvi, M.; Sarikaya, R.; Erkoç, F. Acute behavioral changes in the guppy (Poecilia reticulata) exposed to temephos. Gazi Univ. J. Sci. 2004, 17, 15–19. [Google Scholar]
- Anadu, D.I.; Anaso, H.U.; Onyeka, O.N.D. Acute toxicity of the insect larvicide abate®(temephos) on the fish tilapia melanopleura and the dragonfly larvae neurocordelia virginiensis. J. Environ. Sci. Health Part B 1996, 31, 1363–1375. [Google Scholar] [CrossRef]
Test-Organism | tCNSL (mg/L) | NatCNSLS Mixture (mg/L) | tCNSL + NatCNSLS Mixture (mg/L) | |
---|---|---|---|---|
P. subcapitata | IC50 | 0.33 (0.30–0.37) | 7.10 (5.60–15.40) | 2.10 (1.96–2.17) |
D. similis | EC50 | 0.12 (0.09–0.15) | 0.75 (0.64–0.89) | 1.05 (0.91–1.26) |
O. niloticus | LC50 | 25.46 (23.63–27.42) | 250.30 (242.24–258.62) | 41.44 (39.06–43.89) |
Products | Acute Classification OECD (2002) in Each Biological Group | ||
---|---|---|---|
Algae | Crustacean | Fish | |
tCNSL + NatCNSLS mixture | II | II | III |
Diflubenzuron | III | I | I and II |
Novaluron | I and II | I | I, II and III |
Pirimiphos-methyl | I | I | I and II |
Pyriproxyfen | I | I | I |
Temephos | - | I | I, II and III |
Products | Concentrations (mg/L) | Phytotoxicity Endpoints | Cytotoxicity Endpoints | Genotoxicity Endpoints | |
---|---|---|---|---|---|
CMR (mm) | IM (%) | IAC (%) | IMT (%) | ||
tCNSL | NC 1 | 4.22ǀ0.69 | 88.47ǀ3.21 | 0.49ǀ0.10 | 0.20ǀ0.15 |
27.5 | 4.42ǀ0.57 | 95.44ǀ1.64 | 0.10ǀ0.10 | 0.00ǀ0.05 | |
55 | 3.83ǀ0.53 | 95.64ǀ3.12 | 0.10ǀ0.10 | 0.00ǀ0.05 | |
165 | 3.87ǀ0.96 | 96.79ǀ0.83 | 0.20ǀ0.14 | 0.30ǀ0.33 | |
220 | 3.32ǀ0.22 | 92.81ǀ2.04 | 0.09ǀ0.05 | 0.00ǀ0.05 | |
440 | 2.52ǀ0.73 | 95.12ǀ7.72 | 0.00ǀ0.05 | 0.00ǀ0.05 | |
NatCNSLS mixture | NC 2 | 6.08ǀ0.53 | 98.33ǀ0.95 | 0.10ǀ0.05 | 0.00ǀ0.00 |
165 | 8.13ǀ1.73 | 93.00ǀ0.98 | 0.20ǀ0.34 | 0.00ǀ0.39 | |
330 | 7.10ǀ1.59 | 93.00ǀ1.01 | 0.10ǀ0.05 | 0.00ǀ0.10 | |
990 | 5.98ǀ1.24 | 93.00ǀ0.82 | 0.20ǀ0.19 | 0.20ǀ0.09 | |
1320 | 7.10ǀ2.24 | 93.72ǀ1.41 | 0.59ǀ0.15 | 0.30ǀ0.29 | |
2640 | 6.83ǀ1.20 | 94.26ǀ1.09 | 0.57ǀ0.24 | 0.10ǀ0.10 | |
tCNSL + NatCNSLS mixture | NC 1 | 4.22ǀ0.69 | 88.47ǀ3.21 | 0.49ǀ0.10 | 0.20ǀ0.15 |
192.5 | 5.71ǀ0.75 | 94.08ǀ2.57 | 0.00ǀ0.05 * | 0.00ǀ0.05 | |
385 | 6.14ǀ0.68 | 95.76ǀ1.04 | 0.18ǀ0.10 | 0.10ǀ0.09 | |
1155 | 6.11ǀ0.34 | 94.87ǀ1.55 | 0.00ǀ0.10 * | 0.00ǀ0.05 | |
1540 | 6.16ǀ1.13 | 96.54ǀ0.48 | 0.20ǀ0.05 | 0.10ǀ0.05 | |
3080 | 4.25ǀ0.96 | 95.32ǀ2.08 | 0.10ǀ0.05 * | 0.00ǀ0.00 |
Products | Concentrations (mg/L) | Chromosomal Alterations | DNA Damages | ||
---|---|---|---|---|---|
MN | GI | PT (%) | TS (µm) | ||
tCNSL | NC 1 | 0.00ǀ0.00 | 1.79ǀ1.66 | 38.53ǀ1.91 | 18.37ǀ0.44 * |
PC | 0.03ǀ0.00 * | 6.86ǀ0.61 * | 59.95ǀ4.81 * | 45.22ǀ1.23 * | |
6.36 | 0.00ǀ0.00 | 1.26ǀ0.17 | 33.19ǀ0.73 | 15.65ǀ1.07 | |
12.73 | 0.00ǀ0.00 | 2.89ǀ0.67 | 33.78ǀ0.17 | 22.15ǀ1.27 | |
19.09 | 0.00ǀ0.00 | 2.82ǀ1.49 | 37.02ǀ2.51 | 22.52ǀ1.32 | |
NatCNSLS mixture | NC 2 | 0.00ǀ0.00 | 1.80ǀ0.37 | 34.45ǀ1.57 | 10.67ǀ0.52 |
PC | 0.03ǀ0.00 * | 6.86ǀ0.61 * | 59.95ǀ4.81 * | 45.22ǀ1.23 * | |
62.53 | 0.00ǀ0.00 | 2.50ǀ0.67 | 48.80ǀ2.45 | 18.75ǀ1.45 | |
125.06 | 0.00ǀ0.00 | 1.97ǀ0.27 | 49.51ǀ0.66 | 17.69ǀ0.86 | |
187.59 | 0.00ǀ0.00 | 3.05ǀ0.38 | 40.55ǀ0.98 | 18.25ǀ1.85 | |
tCNSL + NatCNSLS mixture | NC 1 | 0.00ǀ0.00 | 1.79ǀ1.66 | 38.53ǀ1.91 | 18.37ǀ0.44 |
PC | 0.03ǀ0.00 * | 6.86ǀ0.61 * | 59.95ǀ4.81 * | 45.22ǀ1.23 * | |
10.36 | 0.00ǀ0.01 | 1.86ǀ0.23 | 36.53ǀ4.06 | 20.04ǀ2.46 | |
20.72 | 0.00ǀ0.01 | 2.18ǀ0.03 | 27.23ǀ0.79 | 19.81ǀ1.02 | |
31.08 | 0.00ǀ0.00 | 2.15ǀ0.10 | 27.27ǀ3.91 | 16.14ǀ2.17 |
Products | Concentrations (mg/plate) | TA97a | TA98 | TA100 | TA102 | TA1535 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
−S9 | +S9 | −S9 | +S9 | −S9 | +S9 | −S9 | +S9 | −S9 | +S9 | ||
tCNSL | 0.5 | ||||||||||
1 | |||||||||||
2 | |||||||||||
20 | |||||||||||
200 | |||||||||||
2000 | |||||||||||
NatCNSLS mixture | 0.5 | ||||||||||
1 | |||||||||||
2 | |||||||||||
20 | |||||||||||
200 | |||||||||||
2000 | |||||||||||
tCNSL + NatCNSLS mixture | 1 | ||||||||||
2 | |||||||||||
20 | |||||||||||
200 | |||||||||||
2000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jorge, M.R.; Merey, F.M.; Crispim, B.d.A.; Kummrow, F.; Barufatti, A.; Silva Dantas, F.G.d.; Oliveira, K.M.P.d.; Arruda, E.J.d. Ecotoxicological Evaluation of Products Obtained from Technical Cashew Nutshell Liquid (tCNSL) Proposed as Larvicide to Control Aedes aegypti (Diptera: Culicidae). Ecologies 2022, 3, 161-174. https://doi.org/10.3390/ecologies3020013
Jorge MR, Merey FM, Crispim BdA, Kummrow F, Barufatti A, Silva Dantas FGd, Oliveira KMPd, Arruda EJd. Ecotoxicological Evaluation of Products Obtained from Technical Cashew Nutshell Liquid (tCNSL) Proposed as Larvicide to Control Aedes aegypti (Diptera: Culicidae). Ecologies. 2022; 3(2):161-174. https://doi.org/10.3390/ecologies3020013
Chicago/Turabian StyleJorge, Márcia Ramos, Felipe Mendes Merey, Bruno do Amaral Crispim, Fábio Kummrow, Alexeia Barufatti, Fabiana Gomes da Silva Dantas, Kelly Mari Pires de Oliveira, and Eduardo José de Arruda. 2022. "Ecotoxicological Evaluation of Products Obtained from Technical Cashew Nutshell Liquid (tCNSL) Proposed as Larvicide to Control Aedes aegypti (Diptera: Culicidae)" Ecologies 3, no. 2: 161-174. https://doi.org/10.3390/ecologies3020013
APA StyleJorge, M. R., Merey, F. M., Crispim, B. d. A., Kummrow, F., Barufatti, A., Silva Dantas, F. G. d., Oliveira, K. M. P. d., & Arruda, E. J. d. (2022). Ecotoxicological Evaluation of Products Obtained from Technical Cashew Nutshell Liquid (tCNSL) Proposed as Larvicide to Control Aedes aegypti (Diptera: Culicidae). Ecologies, 3(2), 161-174. https://doi.org/10.3390/ecologies3020013