Phytoplankton Indicators in the Assessment of the Ecological Status of Two Reservoirs with Different Purposes in Southern Ukraine
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Objects of Research
2.2. Methods of Hydrological Investigation and Plankton Sampling
2.3. Determination of Algae
- N—Algal number in dm3 of water sample;
- k—Coefficient indicating how many times the volume of the chamber is less than 1 cm3;
- n—The number of algae cells in the tracks of the counting chamber;
- A—Number of tracks of counting chamber;
- a—Number of tracks on which cell counts were made;
- v—Volume of concentrated sample;
- V—Sample volume.
2.4. Statistical Analysis
2.5. Saprobity Determination
3. Results
3.1. Characteristics of the Habitat Conditions of Aquatic Organisms
Station | North | East | Temperature in Surface Horizon, °C | Transparency, m | Oxygen in Surface Horizon, mg O2/dm3 | Depth at the Station, m | pH |
---|---|---|---|---|---|---|---|
Tashlyk Reservoir | |||||||
60 | 47°48′15.6″ | 31°12′10.9″ | 32.7 | 1.5 | 7.28 | 30.0 | 8.63 |
61 | 47°49′12.4″ | 31°12′59.5″ | 34.3 | 0.7 | nd | 8.60 | |
61a | 47°49′08.87″ | 31°12′59.51″ | 41.2 | nd | nd | 8.0 | 8.64 |
63 | 47°48′47.6″ | 31°12′30.9″ | 34.5 | 0.9 | nd | 5.9 | nd |
64 | 47°52′09.2″ | 31°12′49.7″ | 34.1 | 1.1 | nd | 7.0 | 8.77 |
65 | 47°50′27.6″ | 31°13′26.6″ | 35.4 | 0.7 | nd | 8.0 | 8.67 |
68a | 47°49′52.25″ | 31°12′01.55″ | 34.5 | 0.85 | nd | 1.15 | nd |
Alexandrovskoye Reservoir | |||||||
74 | 47°48′15.0″ | 31°10′22.9″ | 26.9 | 2.3 | 8.02 | 7.5 | 8.35 |
76 | 47°47′17.1″ | 31°10′43.6″ | 26.3 | 2.0 | 8.16 | 8.0 | 8.40 |
79 | 47°45′45.6″ | 31°11′00.0″ | 26.1 | 2.05 | 8.32 | 8.0 | 8.20 |
84 | 47°44′20.4″ | 31°11′15.8″ | 26.1 | 1.65 | 8.24 | 8.0 | 8.25 |
88 | 47°44′29.2″ | 31°11′40.2″ | 26.1 | 1.6 | 7.92 | 4.5 | 8.33 |
91 | 47°42′44.1″ | 31°11′13.7″ | 27.9 | 1.1 | 7.68 | 6.0 | 8.37 |
92 | 47°42′07.8″ | 31°12′53.7″ | 26.7 | 0.7 | 7.92 | 6.0 | 8.35 |
112 | 47°42′21.0″ | 31°14′44.4″ | 26.7 | 0.85 | 8.00 | 5.4 | 8.38 |
3.2. Study of the Plankton of Reservoirs and the Indicators
3.3. Indicators of Habitat Conditions for Aquatic Organisms
3.4. Statistical Mapping of Major Variables
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Protasov, A.A. Several Aspects of Application and Optimization of EU Water Framework Directive Approaches in View of Assessment of Ecological State of Technoecosystem. Hydrobiol. J. 2018, 54, 55–68. [Google Scholar] [CrossRef]
- Uzunov, Y.I.; Protasov, A.A. Concept of Ecosystem Services as Applied to Water Technoecosystems. Hydrobiol. J. 2019, 55, 3–17. [Google Scholar] [CrossRef]
- Protasov, A.A. Paradigm shift in technical hydrobiology: From local impact, to a new water techno-ecosystem concept for thermal and nuclear power plants. Ecosyst. Transform. 2021, 4, 3–9. [Google Scholar] [CrossRef]
- Hydropower and the Environment; Landau, Y.; Sirenko, L. (Eds.) Libra: Kiev, Ukraine, 2004; 484p. [Google Scholar]
- Protasov, A.A.; Semenchenko, V.P.; Silaeva, A.A.; Timchenko, V.M.; Buzevich, I.Y.; Guleikova, L.V.; Dyachenko, T.N.; Morozova, A.A.; Yurishinets, V.I.; Yarmoshenko, L.P.; et al. NPP Technoecosystem. Hydrobiology, Abiotic Factors, Environmental Assessments; Institute of Hydrobiology NAS of Ukraine: Kyiv, Ukraine, 2011; p. 234. (In Russian) [Google Scholar]
- Protasov, A.A.; Sergeeva, O.A.; Kosheleva, S.I.; Kaftannikova, O.G.; Lenchina, L.G.; Kalinichenko, R.A.; Vinogradskaya, T.A.; Novikov, B.I.; Afanasyev, S.A.; Sinitsyna, O.O. Hydrobiology of Cooling Ponds of Thermal and Nuclear Power Plants in Ukraine; Naukova Dumka: Kyiv, Ukraine, 1991; 192p. (In Russian) [Google Scholar]
- Novoselova, T.N.; Protasov, A.A. Phytoplankton of cooling ponds of techno-ecosystems of nuclear and thermal power stations (a review). Hydrobiol. J. 2015, 51, 37–52. [Google Scholar] [CrossRef]
- Karataev, A.Y. The Effect of Heating on Freshwater Ecosystems; Dep at VINITI No. 2440—B90; Bulletin of the Belarusian University: Minsk, Republic of Belarus, 1990; 133p. (In Russian) [Google Scholar]
- Mordukhai-Boltovskoy, F.D. The problem of the influence of thermal and nuclear power plants on the hydrobiological regime of water bodies (review). Tr. Inst. Biologii Vnutr. Vod AN SSSR 1975, 27, 7–69. [Google Scholar]
- Protasov, A.A. Concept of Techno-Ecosystem in Technical Hydrobiology. Hydrobiol. J. 2014, 50, 3–15. [Google Scholar] [CrossRef]
- Elliot, J.M. Some aspects of thermal stress on freshwater teleosts. In Stress in Fish; Academic Press: London, UK, 1981; pp. 209–241. [Google Scholar]
- Novoselova, T.N.; Sylaieva, A.A.; Gromova, Y.F.; Menshova, T.I.; Morozovskaya, I.A.; Protasov, A.A. Technoecosystem of the cooling pond of the South Ukrainian Nuclear Power Plant: Group dynamics and transformation. Ecosyst. Transform. 2020, 3, 40–54. Available online: https://cyberleninka.ru/article/n/technoecosystem-of-the-cooling-pond-of-the-south-ukrainian-nuclear-power-plant-group-dynamics-and-transformation (accessed on 1 May 2022). [CrossRef]
- Sergeeva, O.A.; Kalinichenko, R.A.; Kosheleva, S.I.; Lenchina, L.G. Chemical composition of water and plankton of the cooling pond of the South Ukrainian NPP. Hydrobiol. J. 1988, 24, 8–14. (In Russian) [Google Scholar]
- Lisichenko, G.; Shteinberg, M.; Chumak, D.; Prokip, A.; Shutyak, S.; Maskalevich, I.; Vasilkivskiy, B. The Ukrainian Nuclear Industry: Expert Review; Bellona: Oslo, Norway, 2017; p. 115. [Google Scholar]
- Aleksienko, V.R.; Boychenko, S.G.; Bougera, M.A.; Buynovskaya, N.A.; Bulgakov, V.P.; Varlamov, E.M.; Verhovtsev, V.G.; Virich, P.M.; Dudar, T.V.; Zholudenko, O.O.; et al. Comprehensive Geo-Ecological Monitoring of the Impact Zone of the Tashlyk Hydroaccumulation Power Plant and the Oleksandrovsk Reservoir: 1998–2016; Naukova Dumka: Kyiv, Ukraine, 2017; 360p. (In Ukrainian) [Google Scholar]
- Arsan, O.M.; Davydov, O.A.; Dyachenko, T.M.; Yevtushenko, M.Y.; Zhukinsky, V.M.; Kirpenko, N.I.; Kipnis, L.S.; Klenus, V.G.; Konovets, M.I.; Linnik, P.M.; et al. Methods of Hydrobiological Studies of Surface Waters; Logos: Kyiv, Ukraine, 2006; 408p. (In Ukrainian) [Google Scholar]
- Topachevsky, A.V.; Masyuk, N.P. Freshwater Algae of the Ukrainian SSR; High school: Kyiv, Ukraine, 1984; p. 336. (In Russian) [Google Scholar]
- Kumsare, A.Y. Calculation of biomass of phytoplankton in the total volume of cells. In Fishery in the Latvian SSR; Zinatne: Riga, Latvia, 1963; Volume 7, pp. 67–73. (In Russian) [Google Scholar]
- Kuzmin, G.V. Phytoplankton. In Methodology for Studying Biogeocenoses of Inland Water Bodies; Nauka: Moscow, Russia, 1975; pp. 73–78. (In Russian) [Google Scholar]
- Bakanov, A.I. Using the characteristics of zoobenthos diversity for monitoring of the state of freshwater ecosystems. In Monitoring of Biodiversity; Borok: Moscow, Russia, 1997; pp. 278–282. (In Russian) [Google Scholar]
- Vidal, T.; Calado, A.J.; Moita, M.T.; Cunha, M.R. Phytoplankton dynamics in relation to seasonal variability and upwelling and relaxation patterns at the mouth of Ria de Aveiro (West Iberian Margin) over a four-year period. PLoS ONE 2017, 12, e0177237. [Google Scholar] [CrossRef]
- Guiry, M.D.; Guiry, G.M.; AlgaeBase. World-Wide Electronic Publication, National University of Ireland, Galway. Available online: http://www.algaebase.org (accessed on 19 September 2021).
- Protasov, A.A.; Sinitsina, O.O.; Kolomiets, A.V. Use of the WaCo (Water Communities) package to process the hidrobiological samples and create the databases on zoology and algology (FoxPro). Trudy Zool. Inst. RAN 1999, 278, 132. [Google Scholar]
- Pesenko, Y.A. Principles and Methods of Quantitative Analysis in Faunal Studies. Nauka: Moscow, Russia, 1982; 287p. (In Russian) [Google Scholar]
- Smirnov, E.S. Taxonomic analysis of a genus. Zhurnal Obs. Biol. 1960, 21, 89–103. (In Russian) [Google Scholar]
- Rasnitsyn, S.P. Application of taxonomic analysis to compare biotopes by their fauna and population. Zhurnal Obs. Biol. 1966, 26, 335–340. (In Russian) [Google Scholar]
- Huhta, V. Evaluation of different similarity indeces as measures of succession in arthropod communities. Oecologia 1979, 41, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Mc Aleece, N.; Lambsshead, P.; Paterson, G.; Gage, J. Biodiversity Professional V2.0; The Natural History Museum and the Scottish Association for Marine Science: Oban, UK, 1997. [Google Scholar]
- Love, J.; Selker, R.; Marsman, M.; Jamil, T.; Dropmann, D.; Verhagen, A.J.; Ly, A.; Gronau, Q.F.; Smira, M.; Epskamp, S.; et al. JASP: Graphical statistical software for common statistical designs. J. Stat. Softw. 2019, 88, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Barinova, S. Ecological Mapping in Application to Aquatic Ecosystems BioIndication: Problems and Methods. Int. J. Environ. Sci. Nat. Resour. 2017, 3, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Barinova, S. Essential and practical bioindication methods and systems for the water quality assessment. Int. J. Environ. Sci. Nat. Resour. 2017, 2, 90–93. [Google Scholar] [CrossRef]
- Barinova, S.S.; Bilous, O.P.; Tsarenko, P.M. Algal Indication of Water Bodies in Ukraine: Methods and Perspectives; University of Haifa Publisher: Kiev, Ukraine; Haifa, Izrael, 2019; 367p. [Google Scholar]
- Sládeček, V. Diatoms as indicators of organic pollution. Acta Hydroch. Hydrobiol. 1986, 14, 555–566. [Google Scholar] [CrossRef]
- Barinova, S. On the Classification of Water Quality from an Ecological Point of View. Int. J. Environ. Sci. Nat. Res. 2017, 2, 555581. [Google Scholar] [CrossRef]
- Karatayev, A.; Burlakova, L.; Padilla, D. Impacts of Zebra mussels on aquatic communities and their role as ecosystem engineers. In Invasive Aquatic Species of Europe. Distribution, Impacts and Management; Kluwer Academic Publishers: Dordtrecht, The Netherlands; Boston, MA, USA; London, UK, 2002; pp. 433–446. [Google Scholar]
- Mellina, E.; Rasmussen, J.B.; Mills, E.L. Impacts of Zebra mussels (Dreissena polymorpha) on phosphorus cycling and chlorophyll in lakes. Can. Fish. Aquat. Sci. 1995, 52, 2553–2573. [Google Scholar] [CrossRef]
- Turner, C.B. Influence of zebra (Dreissena polymorpha) and quagga (Dreissena rostriformis) mussel invasions on benthic nutrient and oxygen dynamics. Can. Fish. Aquat. Sci. 2010, 67, 1899–1908. [Google Scholar] [CrossRef]
- Pikush, N.V.; Kosheleva, S.I.; Lenchina, L.G.; Vinogradskaya, T.A.; Grin, V.G.; Polivannaya, M.F.; Sergeeva, O.A.; Kaftannikova, O.G.; Kititsyna, L.A. Cooling Pond of Ladyzhinskaya TPP; Naukova Dumka: Kyiv, Ukraine, 1978; p. 132. (In Russian) [Google Scholar]
- Sirenko, L.A.; Korelyakova, I.L.; Mikhailenko, L.E.; Kostikova, L.E.; Litvinova, M.A.; Myslovich, V.O.; Skorik, L.V.; Khoroshikh, L.A.; Shcherbak, V.I.; Yakubovsky, A.B.; et al. Vegetation and Bacterial Population of the Dnieper and Its Reservoirs; Naukova Dumka: Kyiv, Ukraine, 1989; p. 232. [Google Scholar]
- Palamar-Mordvintseva, G.M.; Tsarenko, P.M. Algofloristic zoning of Ukraine. Int. J. Algae 2015, 17, 303–338. [Google Scholar] [CrossRef]
- Klochenko, P.; Shevchenko, T.; Barinova, S.; Tarashchuk, O. Assessment of the ecological state of the Kiev Reservoir by the bioindication method. Oceanol. Hydrobiol. Stud. 2014, 43, 228–236. [Google Scholar] [CrossRef]
- Sosnowska, J. Wpływ zrzutu wód podgrzanych na fitoplankton niektórych jezior koło Konina [Effect of heated effluents on the phytoplankton in some lakes near Konin]. Roczn. Nauk Roln H 1988, 101, 9–130. (In Polish) [Google Scholar]
- Socha, D. Zmiany Jakości Wody I Trofii Podgrzanych Jezior Konińskich; Konin: Warszawa, Poland, 1997; p. 72 S. [Google Scholar]
- Brungs, W.A. Effects of heated water from nuclear plants on aquatic life. In Nuclear Power and the Public; Foreman, H., Ed.; University of Minnesota Press: Minneapolis, MN, USA, 1970; pp. 52–59. [Google Scholar]
- Berry, P.S. Power system facilities: Their impact upon ecology. In Proceedings of the Power Plant Siting: Its Impact on System Planning and the Environment: Presented at the Summer Meeting, Portland, OR, USA, 22 July 1971; pp. 13–16. [Google Scholar]
- Bilous, O.; Barinova, S.; Klochenko, P. Phytoplankton communities in ecological assessment of the Southern Bug River upper reaches (Ukraine). Ecohydrol. Hydrobiol. 2012, 12, 211–230. [Google Scholar] [CrossRef]
- Bilous, O.; Barinova, S.; Klochenko, P. The role of phytoplankton in the ecological assessment of the Southern Bug River middle reaches (Ukraine). Fundam. Appl. Limnol. 2014, 184, 277–295. [Google Scholar] [CrossRef]
- Belous, Y.P.; Barinova, S.S.; Klochenko, P.D.; Zhezherya, V.A.; Zhezherya, T.P.; Nesbritskaya, I.N. Phytoplankton of the Lower Section of the Southern Bug River as the Index of Its Ecological State. Hydrobiol. J. 2016, 52, 19–31. [Google Scholar] [CrossRef]
- Bilous, O.P.; Wojtal, A.Z.; Ivanova, N.O.; Tsarenko, P.M.; Burova, O.V.; Barinova, S. Benthic Diatom Composition in Coastal Zone of Black Sea, Sasyk Reservoir (Ukraine). Diversity 2020, 12, 458. [Google Scholar] [CrossRef]
- Tsarenko, P.M.; Bilous, O.P.; Kryvosheia-Zakharova, O.M.; Lilitska, H.H.; Barinova, S. Diversity of Algae and Cyanobacteria and Bioindication Characteristics of the Alpine Lake Nesamovyte (Eastern Carpathians, Ukraine) from 100 years Ago to the Present. Diversity 2021, 13, 256. [Google Scholar] [CrossRef]
- Barinova, S.; Bilous, O.; Ivanova, N. New Statistical Approach to Spatial Analysis of Ecosystem of the Sasyk Reservoir, Ukraine. Int. J. Ecotoxicol. Ecobiol. 2016, 1, 118–126. [Google Scholar] [CrossRef]
- Barinova, S.S.; Protasov, A.A.; Novoselova, T.N. Spatial Analysis of Environmental and Biological Variables in the Techno-Ecosystem of the Khmelnitsky Nuclear Power Plant with New Statistical Approach. MOJ Ecol. Environ. Sci. 2017, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Dedić, A.; Gerhardt, A.; Kelly, M.G.; Stanić-Koštroman, S.; Šiljeg, M.; Kalamujić Stroil, B.; Kamberović, J.; Mateljak, Z.; Pešić, V.; Vučković, I.; et al. Innovative methods and approaches for WFD: Ideas to fill knowledge gaps in science and policy. Water Solut. 2020, 3, 30–42. [Google Scholar]
- Barinova, S.; Gabyshev, V.; Boboev, M.; Kukhaleishvili, L.; Bilous, O. Algal Indication of Climatic Gradients, American Journal of Environmental Protection. Spec. Issue Appl. Ecol. Probl. Innov. 2015, 4, 72–77. [Google Scholar] [CrossRef]
- Bilous, O.; Barinova, S.; Klochenko, P. Climatic influence on the phytoplankton communities of the upper reaches of the Southern Bug River (Ukraine). Transylv. Rev. Syst. Ecol. Research. Wetl. Divers. 2013, 15, 61–86. [Google Scholar] [CrossRef] [Green Version]
- Protasov, A.; Novoselova, T.; Uzunov, Y.; Barinova, S.; Sylaieva, A. Changes in the Planktonic System of the Nuclear Power Plant Cooling Pond Related to the Invasion of Dreissenidae (Mollusca: Bivalvia). Acta Zool. Bulg. 2021, 73, 275–288. [Google Scholar]
- Protasov, A.; Barinova, S.; Novoselova, T.; Sylaieva, A. The Aquatic Organisms Diversity, Community Structure, and Environmental Conditions. Diversity 2019, 11, 190. [Google Scholar] [CrossRef] [Green Version]
- Barinova, S.; Alster, A. Algae and Cyanobacteria Diversity and Bioindication of Long-Term Changes in the Hula Nature Reserve, Israel. Diversity 2021, 13, 583. [Google Scholar] [CrossRef]
- Novoselova, T.; Barinova, S.; Protasov, A. Long-term dynamics of trophic state indicators in phytoplankton of the cooling reservoir of a nuclear power plant. Transylv. Rev. Syst. Ecol. Research. Wetl. Divers. 2021, 23, 1–14. [Google Scholar] [CrossRef]
- Curtean-Bănăduc, A.; Bănăduc, D.; Bucṣa, C. Watersheds Management (Transylvania/Romania): Implications, risks, solutions, Strategies to enhance environmental Security in transition countries. In NATO Science for Peace and Security Series C-Environmental Security; Springer: Berlin/Heidelberg, Germany, 2007; pp. 225–238. [Google Scholar] [CrossRef]
- Bănăduc, D.; Sas, A.; Cianfaglione, K.; Barinova, S.; Curtean-Bănăduc, A. The Role of Aquatic Refuge Habitats for Fish, and Threats in the Context of Climate Change and Human Impact, during Seasonal Hydrological Drought in the Saxon Villages Area (Transylvania, Romania). Atmosphere 2021, 12, 1209. [Google Scholar] [CrossRef]
- Popa, G.-O.; Curtean-Banaduc, A.; Banaduc, D.; Florescu, I.E.; Burcea, A.; Dudu, A.; Georgescu, S.E.; Costache, M. Molecular Markers Reveal Reduced Genetic Diversity in Romanian Populations of Brown Trout, Salmo trutta L., 1758 (Salmonidae). Acta Zool. Bulg. 2016, 68, 399–406. [Google Scholar]
- Barinova, S.S.; Krupa, E.G.; Protasov, A.A.; Novoselova, T.N. Benthification in the inland water ecosystems of Eurasia, some ecological aspects. MOJ Ecol. Environ. Sci. 2017, 2, 00048. [Google Scholar] [CrossRef] [Green Version]
List | 1–25% | 26–50% | 51–75% | 76–100% |
---|---|---|---|---|
General list for two reservoirs | 42 | 19 | 5 | 3 |
List for Tashlyk reservoir | 20 | 7 | 8 | 13 |
List for Alexandrovskoye reservoir | 25 | 13 | 6 | 1 |
Variable | Tashlyk | Alexandrovskoye |
---|---|---|
Bacillariophyta | 14 | 8 |
Charophyta | 2 | 0 |
Chlorophyta | 28 | 29 |
Cryptophyta | 2 | 2 |
Cyanobacteria | 3 | 3 |
Miozoa | 0 | 1 |
Ochrophyta | 0 | 1 |
Index S | 2.13 | 2.09 |
Abundance average | 20,561.2 | 166,782.3 |
Class of Water Quality | ||
Class 2 | 4 | 3 |
Class 3 | 33 | 34 |
Class 4 | 5 | 2 |
Class 5 | 0 | 0 |
Habitat | ||
P, planktonic | 8 | 8 |
P-B, planktonic-benthic | 28 | 27 |
B, benthic | 6 | 3 |
S, soil | 1 | 2 |
Ep, epiphyte | 1 | 1 |
Temperature | ||
temp, temperate temperature | 7 | 5 |
cool, cool-loving | 1 | 0 |
Oxygen | ||
aer, aerophiles | 1 | 0 |
st-str, low streaming waters | 26 | 26 |
st, standing waters | 3 | 2 |
Watanabe | ||
sx, saproxenes | 1 | 0 |
es, eurysaprobes | 9 | 5 |
sp, saprophiles | 1 | 1 |
Salinity | ||
i, indifferent | 23 | 22 |
hl, halophiles | 5 | 5 |
mh, mesohalobes | 1 | 0 |
eh, euhalobes | 1 | 1 |
pH | ||
acf, acodophiles | 1 | 2 |
ind, pH-indifferent | 9 | 7 |
alf, alkaliphiles | 8 | 7 |
alb, alkalibiontes | 1 | 2 |
Autotrophy–Heterotrophy | ||
ate, autotrophes | 6 | 3 |
hne, mixotrophes survived in high nitrogen content | 5 | 3 |
hce, mixotrophes preferred high nitrogen content | 2 | 1 |
Trophy | ||
ot, oligotraphentes | 1 | 1 |
om, oligo-mesotraphentes | 2 | 0 |
m, mesotraphentes | 0 | 1 |
me, meso-eutraphentes | 3 | 2 |
e, eutraphentes | 22 | 22 |
o-e, oligo- to eutraphentes | 1 | 0 |
he, hypertraphentes | 0 | 1 |
Saprobity | ||
b, beta-mesosaprobes | 24 | 25 |
o, oligosaprobes | 1 | 2 |
a, alpha-mesosaprobes | 1 | 1 |
a-o, alpha-oligosaprobes | 4 | 1 |
o-a, oligo-alpha-mesosaprobes | 6 | 6 |
o-b, oligo-beta-mesosaprobes | 2 | 1 |
b-o, beta-oligosaprobes | 3 | 3 |
b-a, beta-alpha-mesosaprobes | 1 | 0 |
Station | 64 | 65 | 61 | 61a | IC-1 | 63 | 60 |
---|---|---|---|---|---|---|---|
Abundance (thousand cells/dm3) | 36,288 | 25,640 | 26,145 | 15,760 | 6415 | 45,600 | 20,020 |
No of LIT | 31 | 28 | 31 | 28 | 23 | 23 | 27 |
Index S | 2.15 | 2.14 | 2.21 | 2.17 | 2.07 | 2.18 | 2.00 |
N-NO3- (mgN/dm3) | 0.54 | 0.52 | 0.62 | 0.62 | 0.77 | nd | 0.66 |
WESI | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 | nd | 1 |
Shannon H’ Log Base 10 | 0.953 | 0.815 | 0.932 | 1.076 | 0.975 | 0.628 | 1.051 |
Temperature (°C) | 34.00 | 34.10 | 34.30 | 37.40 | 31.40 | 32.70 | 32.70 |
Station | 74 | 76 | 79 | 88 | 84 | 91 | 92 | 112 |
---|---|---|---|---|---|---|---|---|
Abundance (thousand cells/dm3) | 3183 | 4095 | 3291 | 8512 | 4830 | 86,480 | 365,338 | 873,475 |
No of LIT | 11 | 15 | 14 | 20 | 11 | 19 | 16 | 8 |
Index S | 2.00 | 1.98 | 1.93 | 2.00 | 2.05 | 2.10 | 2.11 | 2.09 |
N-NO3- (mgN/dm3) | 0.664 | 0.578 | 0.770 | 0.829 | 0.761 | 0.519 | 0.485 | 0.449 |
WESI | 1.00 | 1.00 | 1.00 | 1.00 | 1.25 | 1.25 | 1.67 | 1.67 |
Shannon H’ Log Base 10 (decit) | 0.936 | 1.006 | 0.994 | 0.812 | 0.615 | 0.158 | 0.336 | 0.118 |
Temperature (°C) | 26.9 | 26.8 | 26.1 | 26.1 | 26.1 | 27.9 | 26.7 | 26.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novoselova, T.; Barinova, S.; Protasov, A. Phytoplankton Indicators in the Assessment of the Ecological Status of Two Reservoirs with Different Purposes in Southern Ukraine. Ecologies 2022, 3, 96-119. https://doi.org/10.3390/ecologies3020009
Novoselova T, Barinova S, Protasov A. Phytoplankton Indicators in the Assessment of the Ecological Status of Two Reservoirs with Different Purposes in Southern Ukraine. Ecologies. 2022; 3(2):96-119. https://doi.org/10.3390/ecologies3020009
Chicago/Turabian StyleNovoselova, Tatiana, Sophia Barinova, and Alexander Protasov. 2022. "Phytoplankton Indicators in the Assessment of the Ecological Status of Two Reservoirs with Different Purposes in Southern Ukraine" Ecologies 3, no. 2: 96-119. https://doi.org/10.3390/ecologies3020009
APA StyleNovoselova, T., Barinova, S., & Protasov, A. (2022). Phytoplankton Indicators in the Assessment of the Ecological Status of Two Reservoirs with Different Purposes in Southern Ukraine. Ecologies, 3(2), 96-119. https://doi.org/10.3390/ecologies3020009