Distribution of Woody Biomass on the Outwash Plain of a Retreating Glacier in Southern Iceland: Role of Microhabitat and Substrate
Abstract
:1. Introduction
2. Methods
2.1. Previous Work
2.2. Location
2.3. Field Techniques
2.4. Data Analysis
3. Results
3.1. Data Summary
3.2. Biomass Calculation
4. Discussion
4.1. Comparison of Outwash Plain to Moraines
4.2. Outwash Bars vs. Channels
4.3. Transect 1 Anomaly
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barret, K.; et al. Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; Available online: https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_SPM.pdf (accessed on 17 May 2024).
- Starfield, A.M.; Chapin, F.S. III. Model of transient changes in Arctic and boreal vegetation in response to climate and land use change. Ecol. Appl. 1996, 6, 842–864. [Google Scholar] [CrossRef]
- Jägerbrand, A.K.; Kudo, G.; Alatalo, J.M.; Molau, U. Effects of neighboring vascular plants on the abundance of bryophytes in different vegetation types. Polar Sci. 2012, 6, 200–208. [Google Scholar] [CrossRef]
- Matthews, J.A. The Ecology of Recently Deglaciated Terrain: A Geoecological Approach to Glacier Forelands and Primary Succession; Cambridge Univ. Press: New York, NY, USA, 2012. [Google Scholar]
- Fickert, T.; Grüninger, F.; Damm, B. Klebelsberg revisited: Did primary succession of plants in glacier forelands a century ago differ from today? Alp. Bot. 2017, 127, 17–29. [Google Scholar] [CrossRef]
- Fickert, T. Common patterns and diverging trajectories in primary succession of plants in eastern alpine glacier forelands. Diversity 2020, 12, 191. [Google Scholar] [CrossRef]
- Bosson, J.B.; Huss, M.; Cauvy-Fraunié, S.; Clément, J.C.; Costes, G.; Fischer, M.; Poulenard, J.; Arthaud, F. Future emergence of new ecosystems caused by glacial retreat. Nature 2023, 620, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Matthews, J.A.; Whittaker, R.J. Vegetation succession on the Storbreen glacier foreland, Jotunheimen, Norway: A review. Arctic Alp. Res. 1987, 19, 385–395. [Google Scholar] [CrossRef]
- Liestøl, O. The glaciers in the Kongsfjorden area, Spitsbergen. Norsk Geografisk Tidsskrift 1988, 42, 231–238. [Google Scholar] [CrossRef]
- Whittaker, R.J. Plant population patterns in a glacier foreland succession: Pioneer herbs and later-colonizing shrubs. Ecography 1993, 16, 117–136. [Google Scholar] [CrossRef]
- Chapin, F.S.; Walker, L.R.; Fastie, C.L.; Sharman, L.C. Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol. Monogr. 1994, 64, 149–157. [Google Scholar] [CrossRef]
- Dowdeswell, J.A. Glaciers in the high Arctic and recent environmental change. Phil. Trans. Roy. Soc. London Ser. A 1995, 352, 321–334. [Google Scholar]
- Fastie, C.L. Causes and Ecosystem Consequences of Multiple Pathways of Primary Succession at Glacier Bay, Alaska. Ecology 1995, 76, 1899–1916. [Google Scholar] [CrossRef]
- Liengen, T.; Olsen, R.A. Seasonal and site-specific variations in nitrogen fixation in a high arctic area, Ny-Ålesund, Spitsbergen. Can. J. Microbiol. 1997, 43, 759–769. [Google Scholar] [CrossRef]
- Hodkinson, I.D.; Coulson, S.J.; Webb, N.R. Community assembly along proglacial chronosequences in the high Arctic: Vegetation and soil development in north-west Svalbard. J. Ecol. 2003, 91, 651–663. [Google Scholar] [CrossRef]
- Jones, G.A.; Henry, G.H.R. Primary plant succession on recently deglaciated terrain in the Canadian High Arctic. J. Biogeogr. 2003, 30, 277–296. [Google Scholar] [CrossRef]
- Jones, C.C.; del Moral, R. Patterns of primary succession on the foreland of Coleman Glacier, Washington, USA. Plant Ecol. 2005, 180, 105–116. [Google Scholar] [CrossRef]
- Burga, C.A.; Krüsi, B.; Egli, M.; Wernli, M.; Elsener, S.; Ziefle, M.; Fischer, T.; Mavris, C. Plant succession and soil development on the foreland of the Morteratsch glacier (Pontresina, Switzerland): Straight forward or chaotic? Flora 2010, 205, 561–576. [Google Scholar] [CrossRef]
- Garobotti, I.A.; Pissolito, C.I.; Villalba, R. Spatiotemporal pattern of primary succession in relation to meso-topographic gradients on recently deglaciated terrains in the Patagonian Andes. Arctic Antarc. Alp. Res. 2011, 43, 555–567. [Google Scholar] [CrossRef]
- Eichel, J. Vegetation Succession and Biogeomorphic Interactions in Glacier Forelands. In Geomorphology of Proglacial Systems. Geography of the Physical Environment; Heckmann, T., Morche, D., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Ficetola, G.F.; Marta, S.; Gurrieri, A.; Gobbi, M.; Ambrosini, R.; Fontaneto, D.; Zerboni, A.; Poulenard, J.; Caccianiga, M.; Thuiller, W. Dynamics of ecological communities following current retreat of glaciers. Ann. Rev. Ecol. Evol. Syst. 2021, 52, 405–426. [Google Scholar] [CrossRef]
- Frenot, Y.; Gloaguen, J.; Cannavacciuolo, M.; Bellido, A. Primary succession on glacier forelands in the subantarctic Kerguelen Islands. J. Veg. Sci. 1998, 9, 75–84. [Google Scholar] [CrossRef]
- Kim, Y.J.; Laffly, D.; Kim, S.E.; Nilsen, L.; Chi, J.; Nam, S.; Jung, J.Y. Chronological changes in soil biogeochemical properties of the glacier foreland of Midtre Lovénbreen, Svalbard, attributed to soil-forming factors. Geoderma 2022, 415, 115777. [Google Scholar] [CrossRef]
- Greinwald, K.; Dieckmann, L.A.; Schipplick, C.; Hartmann, A.; Scherer-Lorenzen, M.; Gebauer, T. Vertical root distribution and biomass allocation along proglacial chronosequences in Central Switzerland. Arctic Antarc. Alp. Res. 2021, 53, 20–34. [Google Scholar] [CrossRef]
- Bekku, Y.S.; Nakatsubo, T.; Kume, A.; Koizumi, H. Soil Microbial Biomass, Respiration Rate, and Temperature Dependence on a Successional Glacier Foreland in Ny-Ålesund, Svalbard. Arctic Antarc. Alp. Res. 2004, 36, 395–399. [Google Scholar] [CrossRef]
- Yoshitake, S.; Uchida, M.; Iimura, Y.; Ohtsuka, T.; Nakatsubo, T. Soil microbial succession along a chronosequence on a High Arctic glacier foreland, Ny-Ålesund, Svalbard: 10 years’ change. Polar Sci. 2018, 16, 59–67. [Google Scholar] [CrossRef]
- Rola, K.; Rożek, K.; Chowaniec, K.; Błaszkowski, J.; Gielas, I.; Stanek, M.; Zubek, S. Vascular plant and cryptogam abundance as well as soil chemical properties shape microbial communities in the successional gradient of glacier foreland soils. Sci. Total Environ. 2023, 860, 160550. [Google Scholar] [CrossRef]
- Nakatsubo, T.; Bekku, Y.S.; Uchida, M.; Muraoka, H.; Kume, A.; Ohtsuka, T.; Masuzawa, T.; Kanda, H.; Koizumi, H. Ecosystem development and carbon cycle on a glacier foreland in the high Arctic, Ny-Ålesund, Svalbard. J. Plant Res. 2005, 118, 173–179. [Google Scholar] [CrossRef]
- Yoshitake, S.; Uchida, M.; Ohtsuka, T.; Kanda, H.; Koizumi, H.; Nakatsubo, T. Vegetation development and carbon storage on a glacier foreland in the High Arctic, Ny-Ålesund, Svalbard. Polar Sci. 2011, 5, 391–397. [Google Scholar]
- Strauss, S.L.; Garcia-Pichel, F.; Day, T.A. Soil microbial carbon and nitrogen transformations at a glacial foreland on Anvers Island, Antarctic Peninsula. Polar Biol. 2012, 35, 1459–1471. [Google Scholar] [CrossRef]
- Wietrzyk-Pełka, P.; Rola, K.; Szymański, W.; Węgrzyn, M.H. Organic carbon accumulation in the glacier forelands with regard to variability of environmental conditions in different ecogenesis stages of High Arctic ecosystems. Sci. Total Environ. 2020, 717, 135151. [Google Scholar] [CrossRef]
- Khedim, N.; Cecillon, L.; Poulenard, J.; Barré, P.; Baudin, F.; Marta, S.; Rabatel, A.; Dentant, C.; Cauvy-Fraunié, S.; Anthelme, F.; et al. Topsoil organic matter build-up in glacier forelands around the world. Glob. Chang. Biol. 2021, 27, 1662–1677. [Google Scholar] [CrossRef]
- Synan, H.E.; Melfi, M.A.; Tanner, L.H. Spatial and temporal dynamics of growth of woody plant species (birch and willows) on the foreland of a retreating glacier in southern Iceland. Ecol. Process. 2021, 10, 13. [Google Scholar] [CrossRef]
- Glausen, T.G.; Tanner, L.H. Successional trends and processes on a glacial foreland in Southern Iceland studied by repeated species counts. Ecol. Process. 2019, 8, 11. [Google Scholar] [CrossRef]
- Tanner, L.; Kikukawa, G.; Weits, K. Temporal and spatial dynamics of succession on a glacial fore-land in southern Iceland: Effects of landscape heterogeneity. Land 2024, 13, 1055. [Google Scholar] [CrossRef]
- Tanner, L.H.; Walker, A.E.; Nivison, M.; Smith, D.L. Changes in soil composition and floral coverage on a glacial foreland chronosequence, southern Iceland. Open J. Soil Sci. 2013, 3, 191–198. [Google Scholar] [CrossRef]
- Vilmundardóttir, O.K.; Gísladóttir, G.; Lal, R. Soil carbon accretion along an age chronosequence formed by the retreat of the Skaftafellsjökull glacier, SE-Iceland. Geomorphology 2015, 228, 124–133. [Google Scholar] [CrossRef]
- Roelofs, E. Investigating Primary Succession following the Retreat of the Breiðamerkurjökull Glacier, Iceland; Middlebury College Independent Study Project (ISP) Collection, Middlebury College: Middlebury, Vermont, USA, 2022; Volume 3522, Available online: https://digitalcollections.sit.edu/isp_collection/3522 (accessed on 17 May 2024).
- Baldursson, S.; Guðnason, J.; Hannesdóttir, H.; Þórðarson, Þ. Nomination of Vatnajökull National Park for Inclusion in the World Heritage List; Vatnajökull National Park: Reykjavík, Iceland, 2018; 359p. [Google Scholar]
- Snorrason, A.; Einarsson, S.F. Single-tree biomass and stem volume functions for eleven tree species used in Icelandic forestry. Icel. Agric. Sci. 2006, 19, 15–24. [Google Scholar]
- Palacio, S.; Hester, A.J.; Maestro, M.; Millard, P. Browsed Betula pubescens trees are not carbon-limited. Function. Ecol. 2008, 22, 808–815. [Google Scholar] [CrossRef]
- Birdsey, R.A. Carbon Storage and Accumulation in United States Forest Ecosystems; U.S. Department of Agriculture, Forest Service, Washington Office: Washington, DC, USA, 1992; P. WO-59. [Google Scholar]
- Rygren, K.; Halvorsen, R.; Töpper, J.P.; Njøs, J.M. Glacial foreland succession and the fading effect of terrain age. J. Veg. Sci. 2014, 25, 1367–1380. [Google Scholar] [CrossRef]
- Schumann, K.; Gewolf, S.; Tackenberg, O. Factors affecting primary succession of glacier foreland vegetation in the European Alps. Alp. Bot. 2016, 126, 105–117. [Google Scholar] [CrossRef]
Transect | Outwash Plain | Channel/Swale | ||||
---|---|---|---|---|---|---|
Segment | N | h (m) | d (cm) | N | h (m) | d (cm) |
T1-1 | 11 | 0.69 | 0.67 | 7 | 1.88 | 2.59 |
T1-2 | 7 | 0.82 | 0.64 | 10 | 1.28 | 1.56 |
T1-3 | 5 | 0.65 | 0.54 | 6 | 0.93 | 1.27 |
T1-4 | 10 | 0.77 | 0.48 | 0 | 0.00 | 0.00 |
T1-5 | 7 | 0.77 | 0.63 | 15 | 1.28 | 2.26 |
T1 mean | 8 | 0.74 | 0.59 | 7.6 | 1.34 | 1.98 |
T2-1 | 16 | 0.73 | 0.45 | 10 | 1.48 | 2.00 |
T2-2 | 8 | 0.63 | 0.46 | 0 | 0.00 | 0.00 |
T2-3 | 10 | 0.55 | 0.62 | 3 | 0.58 | 0.97 |
T2-4 | 8 | 0.62 | 0.65 | 0 | 0.00 | 0.00 |
T2-5 | 14 | 0.57 | 0.38 | 3 | 0.94 | 1.33 |
T2 mean | 11.2 | 0.63 | 0.49 | 3.2 | 1.21 | 1.68 |
T3-1 | 6 | 0.64 | 0.60 | 0 | 0.00 | 0.00 |
T3-2 | 19 | 0.72 | 0.72 | 3 | 1.34 | 1.60 |
T3-3 | 7 | 0.63 | 0.43 | 0 | 0.00 | 0.00 |
T3-4 | 6 | 0.43 | 0.22 | 0 | 0.00 | 0.00 |
T3-5 | 3 | 0.62 | 1.63 | 2 | 1.00 | 1.80 |
T3 mean | 8.2 | 0.54 | 0.65 | 1 | 1.20 | 1.68 |
T4-1 | 11 | 0.59 | 0.35 | 4 | 1.38 | 1.78 |
T4-2 | 4 | 0.46 | 0.25 | 5 | 1.12 | 1.24 |
T4-3 | 3 | 0.56 | 0.40 | 1 | 0.44 | 0.20 |
T4-4 | 6 | 0.72 | 0.65 | 0 | 0.00 | 0.00 |
T4-5 | 6 | 0.55 | 0.48 | 0 | 0.00 | 0.00 |
T4 mean | 6 | 0.59 | 0.43 | 2 | 1.16 | 1.35 |
T1-1 | T1-2 | T1-3 | T1-4 | T1-5 | Total | Total C (kg) | ||
---|---|---|---|---|---|---|---|---|
AGB | channel | 7.645 | 2.585 | 1.237 | 0.000 | 11.290 | 22.758 | |
RB + AGB | 13.220 | 4.500 | 2.170 | 0.000 | 19.470 | 39.360 | 19.600 | |
AGB | bar surface | 0.438 | 0.394 | 0.158 | 0.321 | 0.265 | 1.575 | |
RB + AGB | 0.770 | 0.690 | 0.280 | 0.570 | 0.470 | 2.780 | 1.380 | |
AGB | total | 8.083 | 2.979 | 1.395 | 0.321 | 11.555 | 24.333 | |
RG + AGB | 13.990 | 5.190 | 2.450 | 0.570 | 19.940 | 42.140 | 20.990 | |
T2-1 | T2-2 | T2-3 | T2-4 | T2-5 | Total | |||
AGB | channel | 1.478 | 0.000 | 0.224 | 0.000 | 0.391 | 2.092 | |
RB + AGB | 2.580 | 0.000 | 0.400 | 0.000 | 0.690 | 3.670 | 1.830 | |
AGB | bar surface | 0.289 | 0.169 | 0.384 | 0.353 | 0.169 | 3.035 | |
RB + AGB | 0.510 | 0.300 | 0.680 | 0.620 | 0.300 | 2.410 | 1.200 | |
AGB | total | 1.767 | 0.169 | 0.608 | 0.353 | 0.560 | 5.127 | |
RG + AGB | 3.090 | 0.300 | 1.080 | 0.620 | 0.990 | 6.080 | 3.030 | |
T3-1 | T3-2 | T3-3 | T3-4 | T3-5 | Total | |||
AGB | channel | 0.000 | 0.856 | 0.000 | 0.000 | 0.467 | 1.323 | |
RB + AGB | 0.000 | 1.500 | 0.000 | 0.000 | 0.820 | 2.320 | 1.160 | |
AGB | bar surface | 0.035 | 0.607 | 0.083 | 0.012 | 0.757 | 1.671 | |
RB + AGB | 0.060 | 1.070 | 0.840 | 0.020 | 1.330 | 3.320 | 1.650 | |
AGB | total | 0.035 | 1.463 | 0.083 | 0.012 | 1.224 | 2.993 | |
RG + AGB | 0.060 | 2.570 | 0.840 | 0.020 | 2.150 | 5.640 | 2.810 | |
T4-1 | T4-2 | T4-3 | T4-4 | T4-5 | Total | |||
AGB | channel | 1.141 | 0.533 | 0.002 | 0.000 | 0.000 | 1.675 | |
RB + AGB | 2.000 | 0.940 | 0.000 | 0.000 | 0.000 | 2.940 | 1.460 | |
AGB | bar surface | 1.671 | 0.011 | 0.033 | 0.387 | 0.105 | 2.207 | |
RB + AGB | 2.920 | 0.020 | 0.060 | 0.680 | 0.190 | 3.870 | 1.930 | |
AGB | total | 2.812 | 0.544 | 0.035 | 0.387 | 0.105 | 3.882 | |
RG + AGB | 4.920 | 0.960 | 0.060 | 0.680 | 0.190 | 6.810 | 3.390 |
Species | Height cm | Transect Mean g C m−2 | |
---|---|---|---|
1960 | B. pub. | 72 | 5.26 |
Salix spp. | 1.89 | ||
combined | 7.15 | ||
1954 | B. pub. | 54.8 | 19.86 |
Salix spp. | 2.26 | ||
combined | 22.12 | ||
1938 | B. pub. | 54.2 | 23.49 |
Salix spp. | 2.25 | ||
combined | 25.73 | ||
1904 | B. pub. | 46.4 | 21.13 |
Salix spp. | 1.35 | ||
combined | 22.48 | ||
1890 | B. pub. | 51.8 | 27.91 |
Salix spp. | 0.63 | ||
combined | 28.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pepper Yriberry, F.; Tanner, L.H. Distribution of Woody Biomass on the Outwash Plain of a Retreating Glacier in Southern Iceland: Role of Microhabitat and Substrate. Ecologies 2024, 5, 420-431. https://doi.org/10.3390/ecologies5030026
Pepper Yriberry F, Tanner LH. Distribution of Woody Biomass on the Outwash Plain of a Retreating Glacier in Southern Iceland: Role of Microhabitat and Substrate. Ecologies. 2024; 5(3):420-431. https://doi.org/10.3390/ecologies5030026
Chicago/Turabian StylePepper Yriberry, Fiona, and Lawrence H. Tanner. 2024. "Distribution of Woody Biomass on the Outwash Plain of a Retreating Glacier in Southern Iceland: Role of Microhabitat and Substrate" Ecologies 5, no. 3: 420-431. https://doi.org/10.3390/ecologies5030026
APA StylePepper Yriberry, F., & Tanner, L. H. (2024). Distribution of Woody Biomass on the Outwash Plain of a Retreating Glacier in Southern Iceland: Role of Microhabitat and Substrate. Ecologies, 5(3), 420-431. https://doi.org/10.3390/ecologies5030026