Characterization of Synanthropic Habitats on Shallow Seabeds Using Map Clustering Techniques: A Case Study in Taranto, Apulia, Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition
2.2.1. Marine Litter and Species Mapping
2.2.2. Acquisition and Mapping of Other Parameters
2.3. Data Elaboration
2.3.1. Pre-Processing
Normalization and Encoding for EWC Codes and Biological Data
2.3.2. Data Processing
Hierarchical Clustering
Scatter Matrix
Pareto Chart
Representation of Data on the Geographic Information System
2.4. Post-Processing
Final Post-Processing Mapping for Detail Refinement
3. Results
3.1. Marine Litter Mapping
3.2. Mapping of Waste on the River Banks
3.3. Cluster Analysis
3.4. Modeling of the Marine Circulation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koch, F. Sukopp, H. & Wittig, R. (Hrsg.) (1998): Stadtökologie. Ein Fachbuch für Studium und Praxis. 2. überarbeitete Auflage.—Stuttgart, Jena, Lübeck, Ulm (Gustav Fischer Verlag).—474 S. ISBN 3-437-26000-6. DM 78.-. Zoosystematics Evol. 1999, 75, 343–344. [Google Scholar] [CrossRef]
- Aguilera, M.A.; Rojas, A.; Bulleri, F.; Thiel, M. Breakwaters as habitats for synanthropes: Spatial associations of vertebrates and vegetation with anthropogenic litter. Sci. Total Environ. 2023, 862, 160753. [Google Scholar] [CrossRef] [PubMed]
- Kiacz, S.; Wang, H.H.; Brightsmith, D.J. Presence of Endangered Red-Crowned Parrots (Amazona viridigenalis) Depends on Urban Landscapes. Diversity 2023, 15, 878. [Google Scholar] [CrossRef]
- Interino, N.; Comito, R.; Simoni, P.; Franzellitti, S.; Palladino, G.; Rampelli, S.; Mosendz, A.; Gotti, R.; Roda, A.; Candela, M.; et al. Extraction method for the multiresidue analysis of legacy and emerging pollutants in marine mussels from the Adriatic Sea. Food Chem. 2023, 425, 136453. [Google Scholar] [CrossRef]
- Mistrick, J.; Kipp, E.; Weinberg, S.; Adams, C.; Larsen, P.; Craft, M. Microbiome community composition and zoonotic bacterial pathogen prevalence in synanthropic Peromyscus mice. Authorea Prepr. 2023. [Google Scholar] [CrossRef]
- Qiu, M.; Zigler, C.; Selin, N.E. Statistical and machine learning methods for evaluating trends in air quality under changing meteorological conditions. Atmos. Chem. Phys. 2022, 22, 10551–10566. [Google Scholar] [CrossRef]
- Mitchell, T.M. Machine learning and data mining. Commun. ACM 1999, 42, 30–36. [Google Scholar] [CrossRef]
- Li, X.; Jia, C.; Zhao, H.; Teng, Y.; Zhang, Y.; Zhang, P. Investigation on the influence of the Bohai Sea Geological Environment on the submarine stratum stability based on data mining: An intelligent prediction model. Environ. Sci. Pollut. Res. 2023, 30, 11617–11633. [Google Scholar] [CrossRef]
- Massarelli, C.; Campanale, C.; Triozzi, M.; Uricchio, V.F. Dynamics of pesticides in surface water bodies by applying data mining to spatiotemporal big data. A case study for the Puglia Region. Ecol. Inform. 2023, 78, 102342. [Google Scholar] [CrossRef]
- Gautam, K.; Sharma, P.; Dwivedi, S.; Singh, A.; Gaur, V.K.; Varjani, S.; Srivastava, J.K.; Pandey, A.; Chang, J.S.; Ngo, H.H. A review on control and abatement of soil pollution by heavy metals: Emphasis on artificial intelligence in recovery of contaminated soil. Environ. Res. 2023, 225, 115592. [Google Scholar] [CrossRef]
- MacIntyre, C.R.; Chen, X.; Kunasekaran, M.; Quigley, A.; Lim, S.; Stone, H.; Paik, H.Y.; Yao, L.; Heslop, D.; Wei, W.; et al. Artificial intelligence in public health: The potential of epidemic early warning systems. J. Int. Med. Res. 2023, 51, 03000605231159335. [Google Scholar] [CrossRef] [PubMed]
- Kamboj, R.; Kamboj, S.; Kamboj, S.; Kriplani, P.; Dutt, R.; Guarve, K.; Grewal, A.S.; Srivastav, A.L.; Gautam, S.P. Climate uncertainties and biodiversity: An overview. Vis. Tech. Clim. Chang. Mach. Learn. Artif. Intell. 2023, 1–14. [Google Scholar] [CrossRef]
- Massarelli, C.; Binetti, M.S.; Triozzi, M.; Uricchio, V.F. A First Step towards Developing a Decision Support System Based on the Integration of Environmental Monitoring Activities for Regional Water Resource Protection. Hydrology 2023, 10, 174. [Google Scholar] [CrossRef]
- Binetti, M.S.; Campanale, C.; Uricchio, V.F.; Massarelli, C. In-Depth Monitoring of Anthropic Activities in the Puglia Region: What Is the Acceptable Compromise between Economic Activities and Environmental Protection? Sustainability 2023, 15, 8875. [Google Scholar] [CrossRef]
- Massarelli, C. Fast detection of significantly transformed areas due to illegal waste burial with a procedure applicable to Landsat images. Int. J. Remote Sens. 2017, 39, 754–769. [Google Scholar] [CrossRef]
- Massarelli, C.; Matarrese, R.; Uricchio, V.F.; Muolo, M.R.; Laterza, M.; Ernesto, L. Detection of asbestos-containing materials in agro-ecosystem by the use of airborne hyperspectral CASI-1500 sensor including the limited use of two UAVs equipped with RGB cameras. Int. J. Remote Sens. 2016, 38, 2135–2149. [Google Scholar] [CrossRef]
- Jaeger, A.; Banks, D. Cluster analysis: A modern statistical review. Wiley Interdiscip. Rev. Comput. Stat. 2023, 15, e1597. [Google Scholar] [CrossRef]
- Bracchi, V.A.; Marchese, F.; Savini, A.; Chimienti, G.; Mastrototaro, F.; Tessarolo, C.; Cardone, F.; Tursi, A.; Corselli, C. Seafloor integrity of the Mar Piccolo Basin (Southern Italy): Quantifying anthropogenic impact. J. Maps 2016, 12, 1–11. [Google Scholar] [CrossRef]
- Parenzan, P. Il sedimento conchiglifero del 1° seno del Mar Piccolo di Taranto. Thalass. Salentina 1969, 3, 67–106. [Google Scholar] [CrossRef]
- Cecere, E. Flora and Vegetation of the Italian Transitional Water Systems; CORILA: Venezia, Italy, 2009; ISBN 8889405104. [Google Scholar]
- Cardellicchio, N.; Annicchiarico, C.; Di Leo, A.; Giandomenico, S.; Spada, L. The Mar Piccolo of Taranto: An interesting marine ecosystem for the environmental problems studies. Environ. Sci. Pollut. Res. 2015, 23, 12495–12501. [Google Scholar] [CrossRef]
- Lisco, S.; Corselli, C.; De Giosa, F.; Mastronuzzi, G.; Moretti, M.; Siniscalchi, A.; Marchese, F.; Bracchi, V.; Tessarolo, C.; Tursi, A. Geology of Mar Piccolo, Taranto (southern Italy): The physical basis for remediation of a polluted marine area. J. Maps 2016, 12, 173–180. [Google Scholar] [CrossRef]
- Scardino, G.; De Giosa, F.; D’Onghia, M.; Demonte, P.; Fago, P.; Saccotelli, G.; Valenzano, E.; Moretti, M.; Velardo, R.; Capasso, G.; et al. The Footprints of the Wreckage of the Italian Royal Navy Battleship Leonardo Da Vinci on the Mar Piccolo Sea-Bottom (Taranto, Southern Italy). Oceans 2020, 1, 77–93. [Google Scholar] [CrossRef]
- Cardellicchio, N.; Buccolieri, A.; Giandomenico, S.; Lopez, L.; Pizzulli, F.; Spada, L. Organic pollutants (PAHs, PCBs) in sediments from the Mar Piccolo in Taranto (Ionian Sea, Southern Italy). Mar. Pollut. Bull. 2007, 55, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Cardellicchio, N.; Buccolieri, A.; Di Leo, A.; Spada, L. Heavy Metals in Marine Sediments from the Mar Piccolo of Taranto (Ionian Sea, Southern Italy). Ann. Chim. 2006, 96, 727–741. [Google Scholar] [CrossRef] [PubMed]
- Calace, N.; Ciardullo, S.; Petronio, B.M.; Pietrantonio, M.; Abbondanzi, F.; Campisi, T.; Cardellicchio, N. Influence of chemical parameters (heavy metals, organic matter, sulphur and nitrogen) on toxicity of sediments from the Mar Piccolo (Taranto, Ionian Sea, Italy). Microchem. J. 2005, 79, 243–248. [Google Scholar] [CrossRef]
- Petronio, B.M.; Cardellicchio, N.; Calace, N.; Pietroletti, M.; Pietrantonio, M.; Caliandro, L. Spatial and temporal heavy metal concentration (Cu, Pb, Zn, Hg, Fe, Mn, Hg) in sediments of the Mar Piccolo in Taranto (Ionian Sea, Italy). Water. Air. Soil Pollut. 2012, 223, 863–875. [Google Scholar] [CrossRef]
- Mangia, C.; Gianicolo, E.A.L.; Bruni, A.; Vigotti, M.A.; Cervino, M. Spatial variability of air pollutants in the city of Taranto, Italy and its potential impact on exposure assessment. Environ. Monit. Assess. 2013, 185, 1719–1735. [Google Scholar] [CrossRef]
- Leogrande, S.; Alessandrini, E.R.; Stafoggia, M.; Morabito, A.; Nocioni, A.; Ancona, C.; Bisceglia, L.; Mataloni, F.; Giua, R.; Mincuzzi, A.; et al. Industrial air pollution and mortality in the Taranto area, Southern Italy: A difference-in-differences approach. Environ. Int. 2019, 132, 105030. [Google Scholar] [CrossRef]
- Trifuoggi, M.; Pagano, G.; Oral, R.; Gravina, M.; Toscanesi, M.; Mozzillo, M.; Siciliano, A.; Burić, P.; Lyons, D.M.; Palumbo, A.; et al. Topsoil and urban dust pollution and toxicity in Taranto (southern Italy) industrial area and in a residential district. Environ. Monit. Assess. 2019, 191, 43. [Google Scholar] [CrossRef]
- Pascuzzi, S.; Russo, G.; Mugnozza, G.S.; Verdiani, G.; Lagattolla, G. Contamination of the Environmental Matrices in Agricultural Areas Produced by Industrial Discharges: The Case Study of the Land of the City of Statte (Taranto, Southern Italy). Procedia Environ. Sci. 2013, 19, 671–680. [Google Scholar] [CrossRef]
- Cavallo, R.A.; Latorre, F.; Acquaviva, M.I.; Montagna, M.T.; Mele, M.S. Microbiological indicators of pollution: Water-sediment corrispondence in Mar Piccolo, Taranto; Indicatori microbiologici di inquinamento: Corrispondenza acqua-sedimenti del mar piccolo di Taranto. Inquinamento 1996, 3, 54–57. [Google Scholar]
- Banini, T.; Palagiano, C. Environment and health in italian cities: The case of taranto. Environ. Deterior. Hum. Health Nat. Anthropog. Determ. 2014, 17–37. [Google Scholar] [CrossRef]
- SENTIERI—ISS. Available online: https://www.iss.it/-/health-equity-sentieri (accessed on 29 October 2024).
- Marinaccio, A.; Belli, S.; Binazzi, A.; Scarselli, A.; Massari, S.; Bruni, A.; Conversano, M.; Crosignani, P.; Minerba, A.; Zona, A.; et al. Residential proximity to industrial sites in the area of Taranto (Southern Italy). A case-control cancer incidence study. Ann. Ist. Super. Sanita 2011, 47, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Massarelli, C.; Galeone, C.; Savino, I.; Campanale, C.; Uricchio, V.F. Towards sustainable management of mussel farming through high-resolution images and open source software—The taranto case study. Remote Sens. 2021, 13, 2985. [Google Scholar] [CrossRef]
- Tumolo, M.; Ancona, V.; De Paola, D.; Losacco, D.; Campanale, C.; Massarelli, C.; Uricchio, V.F. Chromium pollution in European water, sources, health risk, and remediation strategies: An overview. Int. J. Environ. Res. Public Health 2020, 17, 5438. [Google Scholar] [CrossRef]
- Ancona, V.; Barra Caracciolo, A.; Grenni, P.; Di Lenola, M.; Campanale, C.; Calabrese, A.; Uricchio, V.F.; Mascolo, G.; Massacci, A. Plant-assisted bioremediation of a historically PCB and heavy metal-contaminated area in Southern Italy. N. Biotechnol. 2017, 38, 65–73. [Google Scholar] [CrossRef]
- Ancona, V.; Caracciolo, A.B.; Campanale, C.; Rascio, I.; Grenni, P.; Di Lenola, M.; Bagnuolo, G.; Uricchio, V.F. Heavy metal phytoremediation of a poplar clone in a contaminated soil in southern Italy. J. Chem. Technol. Biotechnol. 2020, 95, 940–949. [Google Scholar] [CrossRef]
- Labianca, C.; De Gisi, S.; Todaro, F.; Notarnicola, M. DPSIR Model Applied to the Remediation of Contaminated Sites. A Case Study: Mar Piccolo of Taranto. Appl. Sci. 2020, 10, 5080. [Google Scholar] [CrossRef]
- Tursi, A.; Corbelli, V.; Cipriano, G.; Capasso, G.; Velardo, R.; Chimienti, G. Mega-litter and remediation: The case of Mar Piccolo of Taranto (Ionian Sea). Rend. Lincei 2018, 29, 817–824. [Google Scholar] [CrossRef]
- Cardellicchio, N.; Buccolieri, A.; Di Leo, A.; Giandomenico, S.; Spada, L. Levels of metals in reared mussels from Taranto Gulf (Ionian Sea, Southern Italy). Food Chem. 2008, 107, 890–896. [Google Scholar] [CrossRef]
- Escobar-Sánchez, G.; Markfort, G.; Berghald, M.; Ritzenhofen, L.; Schernewski, G. Aerial and underwater drones for marine litter monitoring in shallow coastal waters: Factors influencing item detection and cost-efficiency. Environ. Monit. Assess. 2022, 194, 1–28. [Google Scholar] [CrossRef] [PubMed]
- The European Commission 2014/955/EU: Commission Decision of 18 December 2014 Amending Decision 2000/532/EC on the List of Waste Pursuant to Directive 2008/98/EC of the European Parliament and of the Council Text with EEA Relevance. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32014D0955 (accessed on 14 November 2024).
- Regional Agency for Environmental Protection. The Mar Piccolo of Taranto: Technical-Scientific Study on the Interactions Between the Environmental System and the Flows of Contaminants from Primary and Secondary Sources; ARPA Puglia: Bari, Italy, 2014. [Google Scholar]
- Malcangio, D.; Mossa, M. Tidal current computation in the Mar Piccolo (Taranto). Shallow Flows 2003, III, 185–192. Available online: http://hdl.handle.net/11589/20158 (accessed on 14 November 2024).
- Trinchera, G.; Ungaro, N.; Blonda, M.; Gramegna, D.; Lacarbonara, M.; Di Cunsolo, S.; Renna, R. Technical-Scientific Study on the Interactions Between the Environmental System and the Flows of Contaminants from Primary and Secondary Sources in the Mar Piccolo of Taranto; Maggioli Editore: Rimini, Italy, 2015. [Google Scholar]
- OneHotEncoder—Scikit-Learn 1.3.0 Documentation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html (accessed on 1 November 2024).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Welcome to Python.org. Available online: https://www.python.org/ (accessed on 28 November 2021).
- Plotly Open Source Graphing Libraries. Available online: https://plotly.com/graphing-libraries/ (accessed on 1 November 2024).
- Welcome to the QGIS Project! Available online: https://www.qgis.org/ (accessed on 1 November 2024).
- Chaikin, G.M. An algorithm for high-speed curve generation. Comput. Graph. Image Process 1974, 3, 346–349. [Google Scholar] [CrossRef]
- De Serio, F.; Mossa, M.; De Padova, D. Simulazioni numeriche per lo studio dell’idrodinamica e del trasporto solido nei mari di Taranto. In Proceedings of the Atti della Italian DHI Conference, Torino, Italy, 14 October 2015. [Google Scholar]
- Strafella, P.; Fabi, G.; Despalatovic, M.; Cvitković, I.; Fortibuoni, T.; Gomiero, A.; Guicciardi, S.; Marceta, B.; Raicevich, S.; Tassetti, A.N.; et al. Assessment of seabed litter in the Northern and Central Adriatic Sea (Mediterranean) over six years. Mar. Pollut. Bull. 2019, 141, 24–35. [Google Scholar] [CrossRef]
- Scotti, G.; Esposito, V.; D’Alessandro, M.; Panti, C.; Vivona, P.; Consoli, P.; Figurella, F.; Romeo, T. Seafloor litter along the Italian coastal zone: An integrated approach to identify sources of marine litter. Waste Manag. 2021, 124, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Development of a ‘Matrix Scoring Technique’ to Determine Litter Sources at a Bristol Channel Beach. J. Coast. Conserv. 2004, 10, 119–127. Available online: https://link.springer.com/article/10.1652/1400-0350(2004)010[0119:DOAMST]2.0.CO;2 (accessed on 20 February 2024).
- Madricardo, F.; Ghezzo, M.; Nesto, N.; Mc Kiver, W.J.; Faussone, G.C.; Fiorin, R.; Riccato, F.; Mackelworth, P.C.; Basta, J.; De Pascalis, F.; et al. How to Deal With Seafloor Marine Litter: An Overview of the State-of-the-Art and Future Perspectives. Front. Mar. Sci. 2020, 7, 505134. [Google Scholar] [CrossRef]
- Fraisl, D.; Hager, G.; Bedessem, B.; Gold, M.; Hsing, P.Y.; Danielsen, F.; Hitchcock, C.B.; Hulbert, J.M.; Piera, J.; Spiers, H.; et al. Citizen science in environmental and ecological sciences. Nat. Rev. Methods Prim. 2022, 2, 64. [Google Scholar] [CrossRef]
- Sorvari, J.; Seppälä, J. A decision support tool to prioritize risk management options for contaminated sites. Sci. Total Environ. 2010, 408, 1786–1799. [Google Scholar] [CrossRef]
- Critto, A.; Agostini, P. Using multiple indices to evaluate scenarios for the remediation of contaminated land: The Porto Marghera (Venice, Italy) contaminated site. Environ. Sci. Pollut. Res. 2009, 16, 649–662. [Google Scholar] [CrossRef]
- Galgani, F.; Hanke, G.; Maes, T. Global distribution, composition and abundance of marine litter. In Marine Anthropogenic Litter; Springer: Cham, Switzerland, 2015; pp. 29–56. [Google Scholar] [CrossRef]
- Pensa, D.; Fianchini, A.; Grosso, L.; Ventura, D.; Cataudella, S.; Scardi, M.; Rakaj, A. Population status, distribution and trophic implications of Pinna nobilis along the South-eastern Italian coast. NPJ Biodivers. 2022, 1, 3. [Google Scholar] [CrossRef] [PubMed]
- Rubbens, P.; Brodie, S.; Cordier, T.; Destro Barcellos, D.; Devos, P.; Fernandes-Salvador, J.A.; Fincham, J.I.; Gomes, A.; Handegard, N.O.; Howell, K.; et al. Machine learning in marine ecology: An overview of techniques and applications. ICES J. Mar. Sci. 2023, 80, 1829–1853. [Google Scholar] [CrossRef]
- Kralj, M.; De Vittor, C.; Comici, C.; Relitti, F.; Auriemma, R.; Alabiso, G.; Del Negro, P. Recent evolution of the physical–chemical characteristics of a Site of National Interest—The Mar Piccolo of Taranto (Ionian Sea)—And changes over the last 20 years. Environ. Sci. Pollut. Res. 2016, 23, 12675–12690. [Google Scholar] [CrossRef] [PubMed]
- Massari, F.; Cotugno, P.; Tursi, A.; Milella, P.; Lisco, S.; Scardino, G.; Scicchitano, G.; Rizzo, A.; Valenzano, E.; Moretti, M.; et al. Mapping of Organotin compounds in sediments of Mar Piccolo (Taranto, Italy) using Gas Chromatography-Mass Spectrometry analysis and geochemical data. In Proceedings of the 2021 International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), Reggio Calabria, Italy, 4–6 October 2021; pp. 21–26. [Google Scholar] [CrossRef]
- Barry, J.; Russell, J.; van Hal, R.; van Loon, W.M.G.M.; Norén, K.; Kammann, U.; Galgani, F.; Gago, J.; De Witte, B.; Gerigny, O.; et al. Composition and Spatial Distribution of Litter on the Seafloor. In OSPAR, 2023: The 2023 Quality Status Report for the North-East Atlantic; OSPAR Commission: London, UK, 2022; Available online: https://oap.ospar.org/en/ospar-assessments/quality-status-reports/qsr-2023/indicator-assessments/seafloor-litter/ (accessed on 14 November 2024).
- ODIMS—OSPAR Impulsive Underwater Noise—Pulse Block Days 2018, OSPAR Inner Regions, OSPAR Outer Boundary—QSR2023. Available online: https://odims.ospar.org/en/maps/?layers=ospar_underwater_noise_2018_02_001,ospar_inner_boundary_2016_01_002,ospar_outer_boundary_2023_01_001 (accessed on 1 November 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massarelli, C.; Campanale, C.; Uricchio, V.F. Characterization of Synanthropic Habitats on Shallow Seabeds Using Map Clustering Techniques: A Case Study in Taranto, Apulia, Italy. Ecologies 2024, 5, 627-646. https://doi.org/10.3390/ecologies5040037
Massarelli C, Campanale C, Uricchio VF. Characterization of Synanthropic Habitats on Shallow Seabeds Using Map Clustering Techniques: A Case Study in Taranto, Apulia, Italy. Ecologies. 2024; 5(4):627-646. https://doi.org/10.3390/ecologies5040037
Chicago/Turabian StyleMassarelli, Carmine, Claudia Campanale, and Vito Felice Uricchio. 2024. "Characterization of Synanthropic Habitats on Shallow Seabeds Using Map Clustering Techniques: A Case Study in Taranto, Apulia, Italy" Ecologies 5, no. 4: 627-646. https://doi.org/10.3390/ecologies5040037
APA StyleMassarelli, C., Campanale, C., & Uricchio, V. F. (2024). Characterization of Synanthropic Habitats on Shallow Seabeds Using Map Clustering Techniques: A Case Study in Taranto, Apulia, Italy. Ecologies, 5(4), 627-646. https://doi.org/10.3390/ecologies5040037