Soil and Sediment Organisms as Bioindicators of Pollution
Abstract
:1. Introduction
2. Definition and Role of Bioindicators
Advantages of Using Bioindicators in Pollution Assessment
- Sensitivity to environmental changes: Bioindicators can respond rapidly to changes in their environment, often before the changes are detectable by traditional physico-chemical measurements [16]. This allows early detection of potential problems and rapid intervention.
- Representation of overall ecological quality: Unlike chemical indicators, which measure specific parameters, bioindicators integrate the cumulative effects of pollutants on living organisms. They, therefore, reflect a more complete picture of the ecological state of a given environment [17].
- Cost-effectiveness: The use of bioindicators can be more cost-effective than complex chemical analyses. For example, assessing macroinvertebrate biodiversity in soils or streams requires less expensive technology while providing valuable data on ecosystem health [18].
- Applicability to different environments: bioindicators can be used in a variety of environments, including soils, freshwater, marine waters, and even the atmosphere, providing great flexibility for environmental studies [19].
3. Impact of Pollutants on Soil Biological Communities
Diversity of Soil Organisms
4. Soil Organisms as Bioindicators
4.1. Bioindicator Selection Criteria
4.1.1. Characteristics of Suitable Bioindicator Organisms
4.1.2. Examples of Commonly Used Bioindicators
5. Action Mechanisms of Pollutants in the Soil and Sediments
5.1. Soil Pollution Levels
5.2. Types of Pollutants and Their Sources
5.2.1. Chemical Pollution: Heavy Metals, Pesticides
5.2.2. Biological Pollution: Pathogenic Microorganisms
5.2.3. Physical Pollution: Plastic Waste
5.3. Impact of Pollutants on Soil Organisms
5.3.1. Physiological and Behavioural Effects on Bioindicators
Bioindicateur | Type of Impact | Quantitative Measures | Qualitative Measures | References |
---|---|---|---|---|
Oulema gallaeciana (Chrysomelidae) | Heavy metal contamination | Bioaccumulation factor: Fe = 2.15 | Morphological changes | [12] |
Lachnaia paradoxa (Chrysomelidae) | Heavy metal contamination | Bioaccumulation factor: Fe = 1.69 | Morphological changes | [12] |
Chlaenius olivieri (Carabidae) | Pollution des sols | Bioaccumulation factor: Cd = 9.89 | Morphological changes, Reduced mobility and activity | [17] |
Soil bacteria | Chemical pesticides and fertilisers | 40% decrease in the specific richness of beneficial bacteria | Decreased soil fertility and increased plant diseases | [21] |
Moules (Mytilus edulis) | Plastic pollution | 7.64 particles per individual (87% microfibres whilst 12% fragments). | Obstruction digestive | [70] |
Camponotus japonicus (Hymenoptera) | Heavy metal contamination | Cu = 59.6 ppm | Labial gland disease, reduction in body mass | [74] |
Pterostichus oblongopunctatus (Carabidae) | Effect of temperatures | Larvae mortality was approximately 30% of total | Reduction in body weight, reduced size | [75] |
Trachyderma hispida (Tenebrionidae) | Ceramic pollution | Metal percentages in testicular tissues: p = 37.1, S = 35.7, Na = 9.7 | Structural abnormalities in testicular follicles | [76] |
Honeybees and bumblebees (Hymenoptera) | Chemical pollution (Pesticide (insecticides and fungicides)) | Sublethal doses | Learning abilities and memory are affected, reducing individual foraging efficiency, navigation ability, motor function, and social behaviour in the nest. | [77] |
Carabus lefebvrei (Carabidae) | Heavy metal contamination | Bioaccumulation factor: As = 61.07, Hg = 1.5 | Morphological changes, Physiological alterations | [78] |
Blaps polycresta (Tenebrionidae) | Heavy metal contamination | Bioaccumulation factor: Cd = 95.16 | Decrease in population density, a reduction in body weight, an increase in mortality rate, an increase in sex ratio of the insects, and a decrease in body length | [79] |
5.3.2. Changes in Soil Organism Communities in Response to Pollution
6. Methods for Assessing Pollution Using Bioindicators
6.1. Soil Sampling and Analysis Techniques
6.1.1. Soil Organism Sampling Methods
6.1.2. Biomarker and Biological Indicator Analysis Techniques
6.2. Indices and Assessment Tools
6.2.1. Overview of Biological and Ecological Indices Used to Measure Pollution
6.2.2. Examples of Successful Applications in Different Regions and Soil Types
6.3. Remediation Strategies Based on Bioindicator Results
6.4. Sustainable Soil Management Policies and Practices
7. Prospects and Challenges
7.1. Current Limits to the Use of Bioindicators
7.1.1. Technical Limitations
7.1.2. Variability of Bioindicator Responses
7.1.3. Long-Term Assessment and Reliability
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lavelle, P.; Spain, A.V. Soil organisms. In Soil Organisms; Springer: Dordrecht, The Netherlands, 2001; pp. 201–356. [Google Scholar]
- Bardgett, R.D.; Van Der Putten, W.H. Belowground biodiversity and ecosystem functioning. Nature 2014, 515, 505–511. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Wardle, D.A. Communities and Ecosystems: Linking the Aboveground and Belowground Components (MPB-34); Princeton University Press: Princeton, NJ, USA, 2013. [Google Scholar]
- Smith, P.; Fang, C. A warm response by soils. Nature 2010, 464, 499–500. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, S.; Raoufi, Z.; Faghiri, I.; Savari, A.; Nikpour, Y.; Mansouri, A. Contamination levels and spatial distributions of heavy metals and PAHs in surface sediment of Imam Khomeini Port, Persian Gulf, Iran. Mar. Pollut. Bull. 2013, 71, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Ahmed, M.K.; Habibullah-Al-Mamun, M.; Hoque, M.F. Preliminary assessment of heavy metal contamination in surface sediments from a river in Bangladesh. Environ. Earth Sci. 2015, 73, 1837–1848. [Google Scholar] [CrossRef]
- Ali, M.M.; Ali, M.L.; Islam, M.S.; Rahman, M.Z. Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environ. Nanotechnol. Monit. Manag. 2016, 5, 27–35. [Google Scholar] [CrossRef]
- Bahloul, M.; Baati, H.; Amdouni, R.; Azri, C. Assessment of heavy metals contamination and their potential toxicity in the surface sediments of Sfax Solar Saltern, Tunisia. Environ. Earth Sci. 2018, 77, 27. [Google Scholar] [CrossRef]
- Nadal, M.; Schuhmacher, M.; Domingo, J.L. Metal pollution of soils and vegetation in an area with petrochemical industry. Sci. Total Environ. 2004, 321, 59–69. [Google Scholar] [CrossRef]
- Manahan, S.E. Environmental Chemistry; Lewis: Boca Raton, FL, USA, 2000; p. 898. [Google Scholar]
- Ghannem, S.; Touaylia, S.; Mustapha, B. Assessment of trace metals contamination in soil, leaf litter and leaf beetles (Coleoptera, Chrysomelidae) in the vicinity of a metallurgical factory near Menzel Bourguiba, (Tunisia). J. Hum. Ecol. Risk Assess. Int. J. 2018, 24, 991–1002. [Google Scholar] [CrossRef]
- Kaasalainen, M.; Yli-Halla, M. Use of sequential extraction to assess metal partitioning in soils. Environ. Pollut. 2003, 126, 225–233. [Google Scholar] [CrossRef]
- Beaumelle, L.; Tison, L.; Eisenhauer, N.; Hines, J.; Malladi, S.; Pelosi, C.; Thouvenot, L.; Phillips, H.R. Pesticide effects on soil fauna communities—A meta-analysis. J. Appl. Ecol. 2023, 60, 1239–1253. [Google Scholar] [CrossRef]
- McGeoch, M.A. The selection, testing and application of terrestrial insects as bioindicators. Biol. Rev. 1998, 73, 181–201. [Google Scholar] [CrossRef]
- Markert, B.A.; Breure, A.M.; Zechmeister, H.G. (Eds.) Bioindicators and Biomonitors: Principles, Concepts and Applications; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Ghannem, S.; Khazri, A.; Sellami, B.; Boumaiza, M. Assessment of heavy metal contamination in soil and Chlaenius (Chlaeniellus) olivieri (Coleoptera, Carabidae) in the vicinity of a textile factory near Ras Jbel (Bizerte, Tunisia). Environ. Earth Sci. 2016, 75, 442. [Google Scholar] [CrossRef]
- Hellawell, J.M. (Ed.) Biological Indicators of Freshwater Pollution and Environmental Management; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Cairns, J.; McCormick, P.V.; Niederlehner, B.R. A proposed framework for developing indicators of ecosystem health. Hydrobiologia 1993, 263, 1–44. [Google Scholar] [CrossRef]
- Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 2017, 15, 579–590. [Google Scholar] [CrossRef]
- Kamble, N.S.; Bera, S.; Bhedase, S.A.; Gaur, V.; Chowdhury, D. Review on Applied Applications of Microbiome on Human Lives. Bacteria 2024, 3, 141–159. [Google Scholar] [CrossRef]
- Jones, C.G.; Gutiérrez, J.L.; Groffman, P.M.; Shachak, M. Linking ecosystem engineers to soil processes: A framework using the Jenny State Factor Equation. Eur. J. Soil Biol. 2006, 42, S39–S53. [Google Scholar] [CrossRef]
- Van Der Heijden, M.G.; Bardgett, R.D.; Van Straalen, N.M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef]
- Bongers, T.; Ferris, H. Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol. Evol. 1999, 14, 224–228. [Google Scholar] [CrossRef]
- Heininger, P.; Höss, S.; Claus, E.; Pelzer, J.; Traunspurger, W. Nematode communities in contaminated river sediments. Environ. Pollut. 2007, 146, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Lavelle, P.; Decaëns, T.; Aubert, M.; Barot, S.; Blouin, M.; Bureau, F.; Margerie, P.; Mora, P.; Rossi, J.-P. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 2006, 42, S3–S15. [Google Scholar] [CrossRef]
- Edwards, C.A.; Bohlen, P.J. Biology and Ecology of Earthworms; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1996; Volume 3. [Google Scholar]
- Hooper, D.U.; Chapin, F.S., III; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- Swift, M.J.; Izac, A.M.; Van Noordwijk, M. Biodiversity and ecosystem services in agricultural landscapes- are we asking the right questions? Agric. Ecosyst. Environ. 2004, 104, 113–134. [Google Scholar] [CrossRef]
- Emilia, R.; Debora, B.; Stefania, A.; Nicola, B.; Roberto, B. Papillifera papillaris (OF Müller), a small snail living on stones and monuments, as indicator of metal deposition and bioavailability in urban environments. Ecol. Indic. 2016, 69, 360–367. [Google Scholar] [CrossRef]
- Salih AH, S.H.; Hama, A.A.; Hawrami, K.A.; Ditta, A. The land snail, Eobania vermiculata, as a bioindicator of the heavy metal pollution in the urban areas of Sulaimani, Iraq. Sustainability 2021, 13, 13719. [Google Scholar] [CrossRef]
- Sahraoui, A.S.; Verweij, R.A.; Belhiouani, H.; Cheriti, O.; van Gestel, C.A.; Sahli, L. Dose-dependent effects of lead and cadmium and the influence of soil properties on their uptake by Helix aspersa: An ecotoxicity test approach. Ecotoxicology 2021, 30, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, V.; Pant, D. Environmental biomonitoring by snails. Biomarkers 2021, 26, 221–239. [Google Scholar] [CrossRef]
- Nesterkov, A.V.; Grebennikov, M.E. Grassland land snail communities after reduction of emissions from a copper smelter. Russ. J. Ecol. 2020, 51, 578–588. [Google Scholar] [CrossRef]
- Ugbaja, R.N.; Enilolobo, M.A.; James, A.S.; Akinhanmi, T.F.; Akamo, A.J.; Babayemi, D.O.; Ademuyiwa, O. Bioaccumulation of heavy metals, lipid profiles, and antioxidant status of snails (Achatina achatina) around cement factory vicinities. Toxicol. Ind. Health 2020, 36, 863–875. [Google Scholar] [CrossRef] [PubMed]
- Douafer, L.; Zaidi, N.; Soltani, N. Seasonal variation of biomarker responses in Cantareus aspersus and physic-chemical properties of soils from Northeast Algeria. Environ. Sci. Pollut. Res. 2020, 27, 24145–24161. [Google Scholar] [CrossRef] [PubMed]
- Vasiliu-Oromulu, L.; Honciuc, V.; Maican SPankhurstMunteanu, C.; Stănescu, M.; Fiera, C.; Ion, M.; Purice, D. Are Certain Invertebrate Species Sensitive Bioindicators of the Air Pollution? In Survival and Sustainability: Environmental Concerns in the 21st Century; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1023–1035. [Google Scholar]
- Mukhtorova, D.; Hlava, J.; Száková, J.; Kubík, Š.; Vrabec, V.; Tlustoš, P. Risk element accumulation in Coleoptera and Hymenoptera (Formicidae) living in an extremely contaminated area—A preliminary study. Environ. Monit. Assess. 2019, 191, 432. [Google Scholar] [CrossRef]
- Rainio, J.; Niemelä, J. Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers. Conserv. 2003, 12, 487–506. [Google Scholar] [CrossRef]
- Ghannem, S.; Touaylia, S.; Boumaiza, M. Beetles (Insecta: Coleoptera) as bioindicators of the assessment of environmental pollution. J. Hum. Ecol. Risk Assess. Int. J. 2018, 24, 456–464. [Google Scholar] [CrossRef]
- Maksimovich, K.Y.; Dudko, R.Y.; Shatalova, E.I.; Tsakalof, A.K.; Tsatsakis, A.M.; Golokhvast, K.S.; Novikov, E.A. Species composition and ecological structure of ground beetles (Coleoptera, Carabidae) communities as biological indicators of the agro-environmental sustainability. Environ. Res. 2023, 234, 116030. [Google Scholar] [CrossRef] [PubMed]
- Nahmani, J.; Lavelle, P.; Rossi, J.P. Does changing the taxonomical resolution alter the value of soil macroinvertebrates as bioindicators of metal pollution? Soil Biol. Biochem. 2006, 38, 385–396. [Google Scholar] [CrossRef]
- Edwards, C.A.; Arancon, N.Q.; Sherman, R.L. (Eds.) Vermiculture Technology: Earthworms, Organic Wastes, and Environmental Management; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Bongers, T.; Bongers, M. Functional diversity of nematodes. Appl. Soil Ecol. 1998, 10, 239–251. [Google Scholar] [CrossRef]
- Neher, D.A. Role of nematodes in soil health and their use as indicators. J. Nematol. 2001, 33, 161. [Google Scholar]
- Jansa, J.; Wiemken, A.; Frossard, E. The effects of agricultural practices on arbuscular mycorrhizal fungi. Geol. Soc. Lond. Spec. Publ. 2006, 266, 89–115. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Li, Z.; Wang, Z.; Li, C.; Wei, H. Significance of soil microbe in microbial-assisted phytoremediation: An effective way to enhance phytoremediation of contaminated soil. Int. J. Environ. Sci. Technol. 2020, 17, 2477–2484. [Google Scholar] [CrossRef]
- Atlas, R.M. Microbial Ecology: Fundamentals and Applications; Pearson Education India: New Delhi, India, 1998. [Google Scholar]
- Liu, J.; Chen, X.; Shu, H.Y.; Lin, X.R.; Zhou, Q.X.; Bramryd, T.; Shu, W.-S.; Huang, L.-N. Microbial community structure and function in sediments from e-waste contaminated rivers at Guiyu area of China. Environ. Pollut. 2018, 235, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Fiera, C. Role of Collembola in soil health and their use as indicators. In Species Monitoring in the Central Parks of Bucharest; University Press: Bucharest, Romania, 2008; p. 84. [Google Scholar]
- Balasubramanian, A.; Sivakumar, B.; Hari Prasath, C.N.; Swathiga, G.; Vasanth, V.; Thirumoorthy, P.; Bora, N.R.; Manoj Prabhakar, S.J. Influence of Soil Invertebrates on Soil Decomposition. J. Surv. Fish. Sci. 2023, 10, 618–629. [Google Scholar]
- Tuomela, M.; Vikman, M.; Hatakka, A.; Itävaara, M. Biodegradation of lignin in a compost environment: A review. Bioresour. Technol. 2000, 72, 169–183. [Google Scholar] [CrossRef]
- Sumampouw, G.A.; Indarto, A.; Suendo, V.; Azis, M.M. Chemical and Biochemical Process Involved in the Degradation of Hazardous Contaminants through Bio and Nanoremediation. In Bio and Nanoremediation of Hazardous Environmental Pollutants; CRC Press: Boca Raton, FL, USA, 2023; pp. 256–282. [Google Scholar]
- Sánchez-Bayo, F.; Wyckhuys, K.A. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 2019, 232, 8–27. [Google Scholar] [CrossRef]
- Mao, L.; Liu, L.; Yan, N.; Li, F.; Tao, H.; Ye, H.; Wen, H. Factors controlling the accumulation and ecological risk of trace metal (loid) s in river sediments in agricultural field. Chemosphere 2020, 243, 125359. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, S. Evaluation of heavy metals in water and sediments, pollution, and risk indices of Naltar Lakes, Pakistan. Environ. Sci. Pollut. Res. 2023, 30, 28217–28226. [Google Scholar] [CrossRef]
- Lopez, A.M.; Fitzsimmons, J.N.; Adams, H.M.; Dellapenna, T.M.; Brandon, A.D. A time-series of heavy metal geochemistry in sediments of Galveston Bay estuary, Texas, 2017–2019. Sci. Total Environ. 2022, 806, 150446. [Google Scholar] [CrossRef]
- Muhammad, S.; Ullah, S.; Ali, W.; Jadoon, I.A.; Arif, M. Spatial distribution of heavy metal and risk indices of water and sediments in the Kunhar River and its tributaries. Geocarto Int. 2022, 37, 5985–6003. [Google Scholar] [CrossRef]
- Kirat, G. The environmental pollution of stream sediment in Ulutaş (Erzurum), Turkey. Nat. Hazards 2023, 116, 937–950. [Google Scholar] [CrossRef]
- Tasselli, S.; Marziali, L.; Roscioli, C.; Guzzella, L. Legacy dichlorodiphenyltrichloroethane (DDT) pollution in a river ecosystem: Sediment contamination and bioaccumulation in benthic invertebrates. Sustainability 2023, 15, 6493. [Google Scholar] [CrossRef]
- Li, Y.; Chen, H.; Teng, Y. Source apportionment and source-oriented risk assessment of heavy metals in the sediments of an urban river-lake system. Sci. Total Environ. 2020, 737, 140310. [Google Scholar] [CrossRef] [PubMed]
- Forero-López, A.D.; Toniolo, M.A.; Colombo, C.V.; Rimondino, G.N.; Cuadrado, D.; Perillo GM, E.; Malanca, F.E. Marine microdebris pollution in sediments from three environmental coastal areas in the southwestern Argentine Atlantic. Sci. Total Environ. 2024, 913, 169677. [Google Scholar] [CrossRef]
- Chae, Y.; An, Y.J. Nanoplastic ingestion induces behavioral disorders in terrestrial snails: Trophic transfer effects via vascular plants. Environ. Sci. Nano 2020, 7, 975–983. [Google Scholar] [CrossRef]
- Stamenković, S.; Beškoski, V.; Karabegović, I.; Lazić, M.; Nikolić, N. Microbial fertilizers: A comprehensive review of current findings and future perspectives. Span. J. Agric. Res. 2018, 16, e09R01. [Google Scholar] [CrossRef]
- Alloway, B.; Centeno, J.; Finkelman, R.; Fuge, R.; Lindh, U.; Smedley, P. Essentials of Medical Geology: Revised Edition; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gerba, C.P.; Smith, J.E. Sources of pathogenic microorganisms and their fate during land application of wastes. J. Environ. Qual. 2005, 34, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Rillig, M.C.; Lehmann, A. Microplastic in terrestrial ecosystems. Science 2020, 368, 1430–1431. [Google Scholar] [CrossRef]
- Mitchell, J.K.; Soga, K. Fundamentals of Soil Behavior; John Wiley & Sons: New York, NY, USA, 2005; Volume 3. [Google Scholar]
- Scott, N.; Porter, A.; Santillo, D.; Simpson, H.; Lloyd-Williams, S.; Lewis, C. Particle characteristics of microplastics contaminating the mussel Mytilus edulis and their surrounding environments. Mar. Pollut. Bull. 2019, 146, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Bradl, H. (Ed.) Heavy Metals in the Environment: Origin, Interaction and Remediation; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Spurgeon, D.J.; Hopkin, S.P. Tolerance to zinc in populations of the earthworm Lumbricus rubellus from uncontaminated and metal-contaminated ecosystems. Arch. Environ. Contam. Toxicol. 1999, 37, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, R.B.; van den Brink, P.J.; Liess, M. Impacts of pesticides on freshwater ecosystems. Ecol. Impacts Toxic Chem. 2011, 2011, 111–137. [Google Scholar]
- Zhang, L.; Ma, R.; Yang, L.; Zhang, X.; He, H. Impact of environmental pollution on ant (Camponotus japonicus) development and labial gland disease. J. Hazard. Mater. 2024, 477, 135360. [Google Scholar] [CrossRef]
- Bednarska, A.J.; Brzeska, A.; Laskowski, R. Two-phase uptake of nickel in the ground beetle Pterostichus oblongopunctatus (Coleoptera: Carabidae): Implications for invertebrate metal kinetics. Arch. Environ. Contam. Toxicol. 2011, 60, 722–733. [Google Scholar] [CrossRef] [PubMed]
- Kheirallah, D.A.; El-Samad, L.M. Oogenesis anomalies induced by heavy metal contamination in two tenebrionid beetles (Blaps polycresta and Trachyderma hispida). Folia Biol. 2019, 67, 9–23. [Google Scholar] [CrossRef]
- Feldhaar, H.; Otti, O. Pollutants and their interaction with diseases of social Hymenoptera. Insects 2020, 11, 153. [Google Scholar] [CrossRef] [PubMed]
- Talarico, F.; Brandmayr, P.; Giulianini, P.G.; Ietto, F.; Naccarato, A.; Perrotta, E.; Tagarelli, A.; Giglio, A. Effects of metal pollution on survival and physiological responses in Carabus (Chaetocarabus) lefebvrei (Coleoptera, Carabidae). Eur. J. Soil Biol. 2014, 61, 80–89. [Google Scholar] [CrossRef]
- Osman, W.; MEl-Samad, L.; Mokhamer, E.H.; El-Touhamy, A.; Shonouda, M. Ecological, morphological, and histological studies on Blaps polycresta (Coleoptera: Tenebrionidae) as biomonitors of cadmium soil pollution. Environ. Sci. Pollut. Res. 2015, 22, 14104–14115. [Google Scholar] [CrossRef] [PubMed]
- Giller, K.E.; Witter, E.; Mcgrath, S.P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biol. Biochem. 1998, 30, 1389–1414. [Google Scholar] [CrossRef]
- Miller, H.J.; Henken, G.; Veen, J.V. Variation and composition of bacterial populations in the rhizospheres of maize, wheat, and grass cultivars. Can. J. Microbiol. 1989, 35, 656–660. [Google Scholar] [CrossRef]
- Bengtsson, J.; Ahnström, J.; Weibull, A.C. The effects of organic agriculture on biodiversity and abundance: A meta-analysis. J. Appl. Ecol. 2005, 42, 261–269. [Google Scholar] [CrossRef]
- Beylich, A.; Graefe, U. Investigations of annelids at soil monitoring sites in Northern Germany: Reference ranges and time-series data. Soil Org. 2009, 81, 175–196. [Google Scholar]
- Van Elsas, J.D.; Trevors, J.T.; Jansson, J.K.; Nannipieri, P. Modern Soil Microbiology; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Schuurmann, G.; Markert, B. Ecotoxicology: Ecological Fundamentals, Chemical Exposure and Biological Effects; Wiley: Hoboken, NJ, USA, 1997. [Google Scholar]
- Morel, F.M.; Kraepiel, A.M.; Amyot, M. The chemical cycle and bioaccumulation of mercury. Annu. Rev. Ecol. Syst. 1998, 29, 543–566. [Google Scholar] [CrossRef]
- Bongers, T. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia 1990, 83, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Magurran, A.E. Measuring Biological Diversity; Black-Well Publishing: Hoboken, NJ, USA, 2003. [Google Scholar]
- Parisi, V.; Menta, C.; Gardi, C.; Jacomini, C.; Mozzanica, E. Microarthropod communities as a tool to assess soil quality and biodiversity: A new approach in Italy. Agric. Ecosyst. Environ. 2005, 105, 323–333. [Google Scholar] [CrossRef]
- Mendes, R.; Garbeva, P.; Raaijmakers, J.M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 2013, 37, 634–663. [Google Scholar] [CrossRef] [PubMed]
- Juwarkar, A.A.; Singh, S.K.; Mudhoo, A. A comprehensive overview of elements in bioremediation. Rev. Environ. Sci. Bio/Technol. 2010, 9, 215–288. [Google Scholar] [CrossRef]
- Vamerali, T.; Bandiera, M.; Mosca, G. Field crops for phytoremediation of metal-contaminated land. A Review. Environ. Chem. Lett. 2010, 8, 1–17. [Google Scholar] [CrossRef]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Pankhurst, C. Effects of pesticides used in sugarcane cropping systems on soil organisms and biological functions associated with soil health. In A Report Prepared for the Sugar Yield Decline Joint Venture; Adelaide, CSIRO Publishing: Clayton, Australia, 2006; pp. 1–39. [Google Scholar]
- Jenkins, S.N.; Waite, I.S.; Blackburn, A.; Husband, R.; Rushton, S.P.; Manning, D.C.; O’Donnell, A.G. Actinobacterial community dynamics in long term managed grasslands. Antonie Van Leeuwenhoek 2009, 95, 319–334. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, B.S.; Bonkowski, M.; Roy, J.; Ritz, K. Functional stability, substrate utilisation and biological indicators of soils following environmental impacts. Appl. Soil Ecol. 2001, 16, 49–61. [Google Scholar] [CrossRef]
- Ritz, K.; Black, H.I.; Campbell, C.D.; Harris, J.A.; Wood, C. Selecting biological indicators for monitoring soils: A framework for balancing scientific and technical opinion to assist policy development. Ecol. Indic. 2009, 9, 1212–1221. [Google Scholar] [CrossRef]
Bioindicator | Group | Pollution Type | Indicator Role | Bioindication Context | References |
---|---|---|---|---|---|
Carabidae beetles | Insects | Heavy metals, pesticides | Soil health assessment, indicator of soil structure | Soil | [39,41] |
Earthworms (Lumbricus sp.) | Annelids | Heavy metals, organic pollutants | Indicator of soil structure and organic matter | Soil | [42,43] |
Nematodes | Microfauna | Pesticides, heavy metals | Indicator of soil health and contamination | Soil | [44,45] |
Mycorrhizal fungi | Fungi | Heavy metals, organic pollutants | Indicator of soil nutrient cycling | Soil | [46,47] |
Bacteria (e.g., Pseudomonas) | Microorganisms | Organic pollutants | Indicator of organic matter decomposition | Soil | [48,49] |
Collembola (springtails) | Insects | Pesticides, heavy metals | Indicator of soil structure, biodiversity, and contamination levels | oil | [50,51] |
Fungi (e.g., Basidiomycota) | Fungi | Organic pollution | Indicator of organic pollution and soil health through decomposition processes | Soil | [52,53] |
Invertebrates | Aquatic insects | Heavy metals, pesticides | Indicator of sediment quality | River sediments | [54] |
Pollutant | Type of Site | Pollution Level (mg/kg) | Regulatory Threshold (mg/kg) | Reference |
---|---|---|---|---|
Heavy Metals | ||||
Lead (Pb) | River sediments (urbanised) | 70–120 | 100 | [55] |
Cadmium (Cd) | Lake sediments | 0.2–0.8 | 0.5 | [56] |
Zinc (Zn) | Estuary sediments | 200–300 | 200 | [57] |
Mercury (Hg) | Estuarine sediments | 0.01–0.03 | 0.1 | [57] |
Arsenic (As) | Lake sediments (mining areas) | 15–30 | 20 | [58] |
Chromium (Cr) | Fluvial sediment | 50–150 | 100 | [59] |
Copper (Cu) | Marine sediments (Türkiye) | 70–110 | 100 | [59] |
Pesticides | ||||
DDT | River sediments | 0.02–0.05 | 0.01 | [60] |
Polluants Organiques | ||||
PAHs (Polycyclic Aromatic Hydrocarbons) | Estuarine sediments | 1.5–3.5 | 1.0 | [57] |
PCB (Polychlorinated biphenyls) | Urban sediments | 0.02–0.09 | 0.05 | [61] |
Plastic Pollutants | ||||
Microplastics | Marine sediments | 2.000–5.000 particles/kg | N/A | [62] |
Nanoplastics | Agricultural soils | 50–150 particles/kg | N/A | [63] |
Biological Pollutants | ||||
Microbial pathogens | Agricultural soils (fertilisers) | 103–106 CFU/g | N/A | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghannem, S.; Bacha, O.; Fkiri, S.; Kanzari, S.; Aydi, A.; Touaylia, S. Soil and Sediment Organisms as Bioindicators of Pollution. Ecologies 2024, 5, 679-696. https://doi.org/10.3390/ecologies5040040
Ghannem S, Bacha O, Fkiri S, Kanzari S, Aydi A, Touaylia S. Soil and Sediment Organisms as Bioindicators of Pollution. Ecologies. 2024; 5(4):679-696. https://doi.org/10.3390/ecologies5040040
Chicago/Turabian StyleGhannem, Samir, Ons Bacha, Sondes Fkiri, Sabri Kanzari, Abdelwaheb Aydi, and Samir Touaylia. 2024. "Soil and Sediment Organisms as Bioindicators of Pollution" Ecologies 5, no. 4: 679-696. https://doi.org/10.3390/ecologies5040040
APA StyleGhannem, S., Bacha, O., Fkiri, S., Kanzari, S., Aydi, A., & Touaylia, S. (2024). Soil and Sediment Organisms as Bioindicators of Pollution. Ecologies, 5(4), 679-696. https://doi.org/10.3390/ecologies5040040