Life Cycle Fluoropolymer Management in Proton Exchange Membrane Electrolysis
Abstract
:1. Introduction
1.1. Fluoropolymers and PFAS
1.2. Complex, Durable Goods and Proton Exchange Membrane (PEM) Electrolysis
1.3. Objectives and Problem Formulation
2. Materials and Methods
3. Results and Discussion
3.1. Product Design
3.2. Alternatives
3.3. Material Sourcing
3.4. Product Manufacturing
3.5. Field Deployment
3.6. End-of-Life
3.7. Life Cycle Benefits
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henry, B.J.; Carlin, J.P.; Hammerschmidt, J.A.; Buck, R.C.; Buxton, L.W.; Fiedler, H.; Seed, J.; Hernandez, O. A critical review of the application of polymer of low concern and regulatory criteria to fluoropolymers. Integr. Environ. Assess. Manag. 2018, 14, 316–334. [Google Scholar] [CrossRef] [PubMed]
- Korzeniowski, S.H.; Buck, R.C.; Newkold, R.M.; Kassmi, A.E.; Laganis, E.; Matsuoka, Y.; Dinelli, B.; Beauchet, S.; Adamsky, F.; Weilandt, K.; et al. A critical review of the application of polymer of low concern regulatory criteria to fluoropolymers II: Fluoroplastics and fluoroelastomers. Integr. Environ. Assess. Manag. 2023, 19, 326–354. [Google Scholar] [CrossRef] [PubMed]
- Lohmann, R.; Cousins, I.T.; DeWitt, J.C.; Gluge, J.; Goldenman, G.; Herzke, D.; Lindstrom, A.B.; Miller, M.F.; Ng, C.A.; Patton, S.; et al. Are Fluoropolymers Really of Low Concern for Human and Environmental Health and Separate from Other PFAS? Environ. Sci. Technol. 2020, 54, 12820–12828. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Science and Judgment in Risk Assessment; The National Academies Press: Washington, DC, USA, 1994. [Google Scholar] [CrossRef]
- U.S. EPA. A Working Approach for Identifying Potential Candidate Chemicals for Prioritization. Office of Chemical Safety and Pollution Prevention. 2018. Available online: https://www.epa.gov/sites/default/files/2018-09/documents/preprioritization_white_paper_9272018.pdf (accessed on 13 September 2024).
- European Chemicals Agency. Restriction on the Manufacture, Placing on the Market and Use of PFASs, Annex XV Report. Available online: https://echa.europa.eu/documents/10162/f605d4b5-7c17-7414-8823-b49b9fd43aea (accessed on 13 September 2024).
- U.S. Department of Energy. Technical Targets for Proton Exchange Membrane Electrolysis. 2024. Available online: https://www.energy.gov/eere/fuelcells/technical-targets-proton-exchange-membrane-electrolysis (accessed on 13 September 2024).
- Martinez-Marquez, D.; Florin, N.; Hall, W.; Majewski, P.; Wang, H.; Stewart, R.A. State-of-the-art review of product stewardship strategies for large composite wind turbine blades. Res. Cons. Recycl. Adv. 2022, 15, 200109. [Google Scholar] [CrossRef]
- Sinha, P.; Kriegner, C.J.; Schew, W.A.; Kaczmar, S.W.; Traister, M.; Wilson, D.J. Regulatory policy governing cadmium-telluride photovoltaics: A case study contrasting life cycle management with the precautionary principle. Energy Policy 2008, 36, 381–387. [Google Scholar] [CrossRef]
- National Research Council. A Framework to Guide Selection of Chemical Alternatives; National Academies Press: Washington, DC, USA, 2014. [Google Scholar] [CrossRef]
- Wiser, R.; Mai, T.; Millstein, D.; Macknick, J.; Carpenter, A.; Cohen, S.; Cole, W.; Frew, B.; Heath, G. On the Path to SunShot: The Environmental and Public Health Benefits of Achieving High Penetrations of Solar Energy in the United States. National Renewable Energy Laboratory. 2016. Available online: http://www.nrel.gov/docs/fy16osti/65628.pdf (accessed on 13 September 2024).
- U.S. Environmental Protection Agency. Regulatory Impact Analysis for the Clean Power Plan Final Rule. EPA-452/R-15-003. 2015. Available online: https://www3.epa.gov/ttnecas1/docs/ria/utilities_ria_final-clean-power-plan-existing-units_2015-08.pdf (accessed on 13 September 2024).
- U.S. Environmental Protection Agency. Report on the Social Cost of Greenhouse Gases: Estimates Incorporating Recent Scientific Advances. EPA-HQ-OAR-2021-0317. 2023. Available online: https://www.epa.gov/system/files/documents/2023-12/epa_scghg_2023_report_final.pdf (accessed on 13 September 2024).
- R&D GREET Model. Argonne National Laboratory. 2023. Available online: https://greet.anl.gov/ (accessed on 13 September 2024).
- Nasser, M.; Megahed, T.F.; Ookawara, S.; Hassan, H. A review of water electrolysis–based systems for hydrogen production using hybrid/solar/wind energy systems. Environ. Sci. Pollut. Res. 2022, 29, 86994–87018. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Cao, X.; Jiao, L. PEM water electrolysis for hydrogen production: Fundamentals, advances, and prospects. Carb Neutrality 2022, 1, 21. [Google Scholar] [CrossRef]
- Brinkmann, T.; Santonja, G.G.; Schorcht, F.; Roudier, S.; Sancho, L.D. Best Available Techniques (BAT) Reference Document for the Production of Chlor-alkali. European Commission Joint Research Center. 2014. Available online: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC91156/cak_bref_102014.pdf (accessed on 13 September 2024).
- Wood Group. Update of Market Data for the Socioeconomic Analysis (SEA) of the European Fluoropolymer Industry. Fluoropolymer Product Group of PlasticsEurope. Available online: https://fluoropolymers.eu/wp-content/uploads/2023/12/Fluoropolymers_SEA_2022.pdf (accessed on 13 September 2024).
- Iyer, R.K.; Kelly, J.C.; Elgowainy, A. Electrolyzers for Hydrogen Production: Solid Oxide, Alkaline, and Proton Exchange Membrane; Argonne National Laboratory: Argonne, IL, USA, 2022. [Google Scholar] [CrossRef]
- Nguyen, H.; Klose, K.; Metzler, L.; Vierrath, S.; Breitwieser, M. Fully Hydrocarbon Membrane Electrode Assemblies for Proton Exchange Membrane Fuel Cells and Electrolyzers: An Engineering Perspective. Adv. Energy Mater. 2022, 12, 2103559. [Google Scholar] [CrossRef]
- European Chemicals Agency. Restriction on the Manufacture, Placing on the Market and Use of PFASs, Annex E Impact Assessment. Available online: https://echa.europa.eu/documents/10162/57812f19-8c98-ee67-b70f-6e8a51fe77e5 (accessed on 13 September 2024).
- Fluoropolymers Product Group. FPG Manufacturing Programme for European Manufacturing Sites. Plastics Europe. 2023. Available online: https://fluoropolymers.eu/2023/09/21/fpg-manufacturing-programme-for-european-manufacturing-sites/ (accessed on 13 September 2024).
- Solvay. Solvay to Phase out Use of Fluorosurfactants Globally. 2022. Available online: https://www.solvay.com/en/press-release/solvay-phase-out-use-fluorosurfactants-globally#:~:text=Solvay%20announces%20the%20next%20step,Spinetta%20Marengo%20site%20in%20Italy (accessed on 13 September 2024).
- Valente, A.; Iribarren, J.; Dufour, J. End of life of fuel cells and hydrogen products: From technologies to strategies. Int. J. Hydrogen Energy 2019, 44, 20965–20977. [Google Scholar] [CrossRef]
- Office of Energy Efficiency and Renewable Energy. Funding Selections for Clean Hydrogen Electrolysis, Manufacturing, and Recycling Activities under the Bipartisan Infrastructure Law. U.S. Department of Energy. 2024. Available online: https://www.energy.gov/eere/fuelcells/bipartisan-infrastructure-law-clean-hydrogen-electrolysis-manufacturing-and-0?source=email (accessed on 13 September 2024).
- Taxation and Customs Union. Carbon Border Adjustment Mechanism. European Commission. 2024. Available online: https://taxation-customs.ec.europa.eu/carbon-border-adjustment-mechanism_en (accessed on 28 September 2024).
- Krishnan, S.; Corona, B.; Kramer, G.J.; Junginger, M.; Koning, V. Prospective LCA of alkaline and PEM electrolyser systems. Int. J. Hydrogen Energy 2024, 55, 26–41. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration. California Refinery Hydrogen Production Capacity as of 1 January 2024. Available online: https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=8_NA_8PH_SCA_6&f=A (accessed on 13 September 2024).
Class | Subclass | Definition | Example |
---|---|---|---|
Non-polymer | Per-fluorinated alkyl substances | Compounds with fully fluorinated carbon atoms | Perfluorooctane carboxylate (PFOA) (C7F15COOH); Perfluorooctane sulfonate (PFOS) (C8F17SO3H) |
Poly-fluorinated alkyl substances | Compounds with at least one fully fluorinated carbon atom | Fluorotelomer alcohol (FTOH) (C10F21CH2CH2OH) | |
Polymer | Fluoropolymers | Carbon-only polymer backbone with fluorines directly attached to carbon | Fluoroplastics (e.g.,): Polyvinylidene fluoride (PVDF) (C2H2F2)n |
Fluoroelastomers (e.g.,): Tetrafluoroethylene-propylene co-polymer (FEPM) | |||
Specialty flouroplastics (e.g.,): Perfluorinated sulfonic-acid (PFSA) ionomers | |||
Polymeric perfluoropolyethers | Carbon and oxygen polymer backbone with fluorines directly attached to carbon | Perfluoropolyalkylether | |
Side-chain fluorinated polymers | Nonfluorinated polymer backbone, with fluorinated side chains | Fluorinated urethane polymers |
Property | Value |
---|---|
Temperature | Up to 90 °C |
Pressure | Up to 30 bar |
pH | Acidic |
Redox conditions | Oxidizing |
Operating hours | 40,000–80,000 |
Property | Value |
---|---|
Molecular weight | >100,000 g/mol |
Solubility | Insoluble in water |
Operating temperature | Maximum operating temperature of 220–240 °C |
Bioavailability | Not bioavailable or bioaccumulative—cannot be absorbed through cell membrane and does not interact with cell surface |
Target Year | Average Emissions to Air | Average Emissions to Water |
---|---|---|
End 2024 | 0.009% | 0.001% |
End 2030 | 0.003% | 0.0006% |
Cell Stack Component | Target Material Recycled | Quantity (kg/MW) |
---|---|---|
Membrane–electrode assembly | Fluoropolymer | 14 |
Iridium | 0.6 | |
Platinum | 0.4 | |
Titanium | 57 | |
Bipolar plate | Titanium | 108 |
Life Cycle Impacts of PEM Renewable Electrolysis [14] | Life Cycle Impacts of Alkaline Renewable Electrolysis [14] | Life Cycle Impacts of Natural Gas SMR [14] | Environmental Damage Factor (2020 Dollars/Metric Ton) [12,13] | Environmental and Health Benefit of Replacing SMR with PEMWE (2020 Dollars/kg H2) | |
---|---|---|---|---|---|
VOC (g/kg H2) | 0.011 | 0.030 | 1.582 | ||
CO (g/kg H2) | 0.051 | 0.152 | 4.114 | ||
NOx (g/kg H2) | 0.035 | 0.068 | 4.930 | USD 31,633 | USD 0.15 |
PM10 (g/kg H2) | 0.007 | 0.017 | 0.240 | ||
PM2.5 (g/kg H2) | 0.004 | 0.009 | 0.229 | USD 532,008 | USD 0.12 |
SOx (g/kg H2) | 0.288 | 1.231 | 1.482 | USD 136,597 | USD 0.16 |
BC (g/kg H2) | 0.0002 | 0.0004 | 0.021 | ||
OC (g/kg H2) | 0.001 | 0.001 | 0.050 | ||
CH4 (g/kg H2) | 0.075 | 0.154 | 27.350 | USD 1900 | USD 0.05 |
N2O (g/kg H2) | 0.002 | 0.003 | 0.198 | USD 55,000 | USD 0.01 |
CO2 (kg/kg H2) | 0.035 | 0.063 | 8.581 | USD 190 | USD 1.62 |
GHGs (kg CO2eq/kg H2) | 0.038 | 0.069 | 9.461 | ||
Water consumption (L/kg H2) | 0.755 | 0.860 | 17.962 | ||
Energy use (MJ/kg H2) | 0.544 | 0.989 | 30.997 | ||
Total | USD 2.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinha, P.; Cypher, S.M. Life Cycle Fluoropolymer Management in Proton Exchange Membrane Electrolysis. Hydrogen 2024, 5, 710-722. https://doi.org/10.3390/hydrogen5040037
Sinha P, Cypher SM. Life Cycle Fluoropolymer Management in Proton Exchange Membrane Electrolysis. Hydrogen. 2024; 5(4):710-722. https://doi.org/10.3390/hydrogen5040037
Chicago/Turabian StyleSinha, Parikhit, and Sabrine M. Cypher. 2024. "Life Cycle Fluoropolymer Management in Proton Exchange Membrane Electrolysis" Hydrogen 5, no. 4: 710-722. https://doi.org/10.3390/hydrogen5040037
APA StyleSinha, P., & Cypher, S. M. (2024). Life Cycle Fluoropolymer Management in Proton Exchange Membrane Electrolysis. Hydrogen, 5(4), 710-722. https://doi.org/10.3390/hydrogen5040037