Tuning the Morphology of Transition Metal Disulfides: Advances in Electrocatalysts for Hydrogen Evolution Reaction
Abstract
:1. Introduction
2. HER Mechanism
3. Crystal Structure and Conductivity of TMDs
3.1. Zero-Dimensional (0D) TMDs
3.2. One-Dimensional (1D) TMDs
3.3. Two-Dimensional (2D) TMDs
3.4. Three-Dimensional (3D) TMDs
4. Current Challenges and Future Perspectives
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shiraz, H.G.; Crispin, X.; Berggren, M. Transition metal sulfides for electrochemical hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 24060–24077. [Google Scholar] [CrossRef]
- Muthu, S.; Balaji, M.; Saravanan, S.; Sekar, S.; Kumar, S.A.; Ilanchezhiyan, P.; Lee, S.; Sridharan, M.B. Hierarchical nanocomposite of cobalt sulfide nanoflakes-decorated reduced graphene oxide for enhancing the electrocatalytic hydrogen evolution reaction. Int. J. Hydrogen Energy 2023, 52, 1405–1414. [Google Scholar] [CrossRef]
- Nasser, M.; Megahed, T.F.; Ookawara, S.; Hassan, H. A review of water electrolysis–based systems for hydrogen production using hybrid/solar/wind energy systems. Environ. Sci. Pollut. Res. 2022, 29, 86994–87018. [Google Scholar] [CrossRef] [PubMed]
- Karapekmez, A.; Dincer, I. Development of a multigenerational energy system for clean hydrogen generation. J. Clean. Prod. 2021, 299, 126909. [Google Scholar] [CrossRef]
- Pareek, A.; Dom, R.; Gupta, J.; Chandran, J.; Adepu, V.; Borse, P.H. Insights into renewable hydrogen energy: Recent advances and prospects. Mater. Sci. Energy Technol. 2020, 3, 319–327. [Google Scholar] [CrossRef]
- You, B.; Sun, Y. Innovative Strategies for Electrocatalytic Water Splitting. Acc. Chem. Res. 2018, 51, 1571–1580. [Google Scholar] [CrossRef]
- Farhan, A.; Murad, M.; Qayyum, W.; Nawaz, A.; Sajid, M.; Shahid, S.; Qamar, M.A. Transition-metal sulfides with excellent hydrogen and oxygen reactions: A mini-review. J. Solid State Chem. 2024, 329, 124445. [Google Scholar] [CrossRef]
- Zahra, R.; Pervaiz, E.; Yang, M.; Rabi, O.; Saleem, Z.; Ali, M.; Farrukh, S. A review on nickel cobalt sulphide and their hybrids: Earth abundant, pH stable electro-catalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 24518–24543. [Google Scholar] [CrossRef]
- Guo, C.; Liu, X.; Gao, L.; Ma, X.; Zhao, M.; Zhou, J.; Kuang, X.; Deng, W.; Sun, X.; Wei, Q. Oxygen defect engineering in cobalt iron oxide nanosheets for promoted overall water splitting. J. Mater. Chem. A 2019, 7, 21704–21710. [Google Scholar] [CrossRef]
- Chen, P.; Ye, J.; Wang, H.; Ouyang, L.; Zhu, M. Recent progress of transition metal carbides/nitrides for electrocatalytic water splitting. J. Alloys Compd. 2021, 883, 160833. [Google Scholar] [CrossRef]
- Babar, P.; Lokhande, A.; Karade, V.; Pawar, B.; Gang, M.G.; Pawar, S.; Kim, J.H.B. ifunctional 2D Electrocatalysts of Transition Metal Hydroxide Nanosheet Arrays for Water Splitting and Urea Electrolysis. ACS Sustain. Chem. Eng. 2019, 7, 10035–10043. [Google Scholar] [CrossRef]
- Zhang, H.; Maijenburg, A.W.; Li, X.; Schweizer, S.L.; Wehrspohn, R.B. Bifunctional Heterostructured Transition Metal Phosphides for Efficient Electrochemical Water Splitting. Adv. Funct. Mater. 2020, 30, 2003261. [Google Scholar] [CrossRef]
- Irshad, A.; Munichandraiah, N. Electrodeposited Nickel-Cobalt-Sulfide Catalyst for the Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2017, 9, 19746–19755. [Google Scholar] [CrossRef]
- Zhang, B.; Li, X.; Liu, M. Effect of nickel sulfide catalysts with different morphologies on high efficiency alkaline hydrogen evolution reaction. Int. J. Electrochem. Sci. 2024, 19, 100579. [Google Scholar] [CrossRef]
- Wu, H.; Feng, C.; Zhang, L.; Zhang, J.; Wilkinson, D.P. Non-Noble Metal Electrocatalysts for the Hydrogen Evolution Reaction in Water Electrolysis; Springer: Gateway East, Singapore, 2021; Volume 4. [Google Scholar] [CrossRef]
- Dutta, B.; Wu, Y.; Chen, J.; Wang, J.; He, J.; Sharafeldin, M.; Suib, S.L. Partial Surface Selenization of Cobalt Sulfide Microspheres for Enhancing the Hydrogen Evolution Reaction. ACS Catal. 2019, 9, 456–465. [Google Scholar] [CrossRef]
- Ding, X.; Liu, D.; Zhao, P.; Chen, X.; Wang, H.; Oropeza, F.E.; Gorni, G.; Barawi, M.; García-Tecedor, M.; de la Peña O’Shea, V.A.; et al. Dynamic restructuring of nickel sulfides for electrocatalytic hydrogen evolution reaction. Nat. Commun. 2024, 15, 5336. [Google Scholar] [CrossRef]
- Yang, J.; Mohmad, A.R.; Wang, Y.; Fullon, R.; Song, X.; Zhao, F.; Bozkurt, I.; Augustin, M.; Santos, E.J.G.; Shin, H.S.; et al. Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat. Mater. 2019, 18, 1309–1314. [Google Scholar] [CrossRef]
- Yu, Q.; Luo, Y.; Qiu, S.; Li, Q.; Cai, Z.; Zhang, Z.; Liu, S.; Sun, C.; Liu, B. Tuning the hydrogen evolution performance of metallic 2d tantalum disulfide by interfacial engineering. ACS Nano 2019, 13, 11874–11881. [Google Scholar] [CrossRef]
- Shi, M.; Jiang, Z.; Mei, B.; Li, Y.; Sun, F.; Yu, H.; Xu, Y. Tuning the hydrogen evolution performance of 2D tungsten disulfide by interfacial engineering. J. Mater. Chem. A 2021, 9, 7059–7067. [Google Scholar] [CrossRef]
- Pan, H. Tension-Enhanced Hydrogen Evolution Reaction on Vanadium Disulfide Monolayer. Nanoscale Res. Lett. 2016, 11, 113. [Google Scholar] [CrossRef]
- Liu, X.; Hu, J.; Yue, C.; Della Fera, N.; Ling, Y.; Mao, Z.; Wei, J. High performance field-effect transistor based on multilayer tungsten disulfide. ACS Nano 2014, 8, 10396–10402. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhou, Q.; Cao, M.; Zhou, Z.; Liu, X. High-temperature solid lubrication applications of Transition Metal Dichalcogenides(TMDCs) MX2: A review. Nano Mater. Sci. 2024. [Google Scholar] [CrossRef]
- Meerbach, C.; Klemmed, B.; Spittel, D.; Bauer, C.; Park, Y.J.; Hübner, R.; Jeong, H.Y.; Erb, D.; Shin, H.S.; Lesnyak, V.; et al. General Colloidal Synthesis of Transition-Metal Disulfide Nanomaterials as Electrocatalysts for Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2020, 12, 13148–13155. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, Z.; Huang, B.; Wang, X.; Niu, H.; Guo, Y.; Li, B.; Zheng, R.; Wu, H. Theoretical study on the photocatalytic properties of 2D InX(X = S, Se)/transition metal disulfide (MoS2 and WS2) van der Waals heterostructures. Nanoscale 2020, 12, 20025–20032. [Google Scholar] [CrossRef]
- Zhao, M.; Yang, M.; Huang, W.; Liao, W.; Bian, H.; Chen, D.; Wang, L.; Tang, J.; Liu, C. Synergism on Electronic Structures and Active Edges of Metallic Vanadium Disulfide Nanosheets via Co Doping for Efficient Hydrogen Evolution Reaction in Seawater. ChemCatChem 2021, 13, 2138–2144. [Google Scholar] [CrossRef]
- Huang, C.; Yu, L.; Zhang, W.; Xiao, Q.; Zhou, J.; Zhang, Y.; An, P.; Zhang, J.; Yu, Y. N-doped Ni-Mo based sulfides for high-efficiency and stable hydrogen evolution reaction. Appl. Catal. B 2020, 276, 119137. [Google Scholar] [CrossRef]
- Bhimanapati, G.R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M.S.; Cooper, V.R.; et al. Recent Advances in Two-Dimensional Materials beyond Graphene. ACS Nano 2015, 9, 11509–11539. [Google Scholar] [CrossRef]
- Tekalgne, M.A.; Nguyen, K.V.; Nguyen, D.L.T.; Nguyen, V.H.; Nguyen, T.P.; Vo, D.V.N.; Trinh, T.P.; Vo, N.D.; Trinh, Q.T.; Hasani, A.; et al. Hierarchical molybdenum disulfide on carbon nanotube–reduced graphene oxide composite paper as efficient catalysts for hydrogen evolution reaction. J. Alloys Compd. 2020, 823, 153897. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299. [Google Scholar] [CrossRef]
- Chen, R.; Song, Y.; Wang, Z.; Gao, Y.; Sheng, Y.; Shu, Z.; Zhang, J.; Li, X. Porous nickel disulfide/reduced graphene oxide nanohybrids with improved electrocatalytic performance for hydrogen evolution. Catal. Commun. 2016, 85, 26–29. [Google Scholar] [CrossRef]
- Li, Y.; Yin, X.; Huang, X.; Liu, X.; Wu, W. Efficient and scalable preparation of MoS2 nanosheet/carbon nanotube composites for hydrogen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 16489–16499. [Google Scholar] [CrossRef]
- Tiwari, J.N.; Tiwari, R.N.; Kim, K.S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 2012, 57, 724–803. [Google Scholar] [CrossRef]
- Long, X.; Li, G.; Wang, Z.; Zhu, H.; Zhang, T.; Xiao, S.; Gua, W.; Yang, S. Metallic Iron-Nickel Sulfide Ultrathin Nanosheets As a Highly Active Electrocatalyst for Hydrogen Evolution Reaction in Acidic Media. J. Am. Chem. Soc. 2015, 137, 11900–11903. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Si, J.; Lyu, S.; Zhang, T.; Li, Z.; Lei, C.; Lei, L.; Yuan, C.; Gao, L.; Hou, Y. Highly Effective Electrochemical Exfoliation of Ultrathin Tantalum Disulfide Nanosheets for Energy-Efficient Hydrogen Evolution Electrocatalysis. ACS Appl. Mater. Interfaces 2020, 12, 24675–24682. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jia, F.; Song, S. Recent advances in structural engineering of molybdenum disulfide for electrocatalytic hydrogen evolution reaction. Chem. Eng. J. 2021, 405, 127013. [Google Scholar] [CrossRef]
- Lasia, A. Mechanism and kinetics of the hydrogen evolution reaction. Int. J. Hydrogen Energy 2019, 44, 19484–19518. [Google Scholar] [CrossRef]
- Shajaripour, J.S.Y.; Ghaffarinejad, A.; Khajehsaeidi, Z. The effect of annealing temperature, reaction time, and cobalt precursor on the structural properties and catalytic performance of CoS2 for hydrogen evolution reaction. Int. J. Hydrogen Energy 2021, 46, 3922–3932. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, L.; He, Y.; Zhu, H. Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2021, 9, 5320–5363. [Google Scholar] [CrossRef]
- Safizadeh, F.; Ghali, E.; Houlachi, G. Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions—A Review. Int. J. Hydrogen Energy 2015, 40, 256–274. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Zhang, B.; Ji, X.; Xu, K.; Chen, C.; Miao, L.; Jiang, J. The mechanism of hydrogen adsorption on transition metal dichalcogenides as hydrogen evolution reaction catalyst. Phys. Chem. Chem. Phys. 2017, 19, 10125–10132. [Google Scholar] [CrossRef]
- Mondal, A.; Vomiero, A. 2D Transition Metal Dichalcogenides-Based Electrocatalysts for Hydrogen Evolution Reaction. Adv. Funct. Mater. 2022, 32, 2208994. [Google Scholar] [CrossRef]
- Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M.; Asefa, T.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222–6227. [Google Scholar] [CrossRef] [PubMed]
- Ran, N.; Qiu, W.; Song, E.; Wang, Y.; Zhao, X.; Liu, Z.; Liu, J. Bond Electronegativity as Hydrogen Evolution Reaction Catalyst Descriptor for Transition Metal (TM = Mo, W) Dichalcogenides. Chem. Mater. 2020, 32, 1224–1234. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, M.; Cai, Y.; Zhuang, Y.; Wang, L. The Advanced Progress of MoS2 and WS2 for Multi-Catalytic Hydrogen Evolution Reaction Systems. Catalysts 2023, 13, 1148. [Google Scholar] [CrossRef]
- Yin, Y.; Han, J.; Zhang, Y.; Zhang, X.; Xu, P.; Yuan, Q.; Samad, L.; Wang, X.; Wang, Y.; Zang, Z.; et al. Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen Evolution Reaction Catalytic Activity of Porous Molybdenum Disulfide Nanosheets. J. Am. Chem. Soc. 2016, 138, 7965–7972. [Google Scholar] [CrossRef]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef]
- Wang, R.; Shao, Q.; Yuan, Q.; Sun, P.; Nie, R.; Wang, X. Direct growth of high-content 1T phase MoS2 film by pulsed laser deposition for hydrogen evolution reaction. Appl. Surf. Sci. 2020, 504, 144320. [Google Scholar] [CrossRef]
- Li, Z.; Yue, Y.; Peng, J.; Luo, Z. Phase engineering two-dimensional nanostructures for electrocatalytic hydrogen evolution reaction. Chin. Chem. Lett. 2023, 34, 107119. [Google Scholar] [CrossRef]
- Kashif, M.; Thangarasu, S.; Oh, T.H. Enriching the active sites of nanosheets assembled as flower-like MoS2 microstructure by controllable morphology for electrochemical hydrogen evolution reaction. Int. J. Hydrogen Energy 2024, 82, 47–52. [Google Scholar] [CrossRef]
- Chen, X.; Yu, Y.; Li, J.; Deng, P.; Wang, C.; Hua, Y.; Shen, Y.; Tian, X. Recent advances in cobalt disulfide for electrochemical hydrogen evolution reaction. Int. J. Hydrogen Energy 2023, 48, 9231–9243. [Google Scholar] [CrossRef]
- Xie, W.; Liu, K.; Shi, G.; Fu, X.; Chen, X.; Fan, Z.; Liu, M.; Yuan, M.; Wang, M. CoS2 nanowires supported graphdiyne for highly efficient hydrogen evolution reaction. J. Energy Chem. 2021, 60, 272–278. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Sun, C.; Xi, P.; Peng, S.; Gao, D.; Xue, D. Accelerated Hydrogen Evolution Reaction in CoS2 by Transition-Metal Doping. ACS Energy Lett. 2018, 3, 779–786. [Google Scholar] [CrossRef]
- Hu, Y.; Qi, Y.; Pi, M.; Qiao, Y.; Hao, L.; Wang, Y.; Guan, H.; Feng, J. Nanostructure and stoichiometry tailoring of CoS2 for high performance hydrogen evolution reaction. Int. J. Hydrogen Energy 2023, 48, 16279–16285. [Google Scholar] [CrossRef]
- Hedayati, M.A.; Ahangar, A.M.; Maleki, M.; Ghanbari, H. Low-temperature hydrothermal growth of MoS2 nanostructures on carbon foam for hydrogen evolution reaction. Diam. Relat. Mater. 2023, 139, 110342. [Google Scholar] [CrossRef]
- Mahanthappa, M.; Bhat, M.P.; Alshoaibi, A. Exploring the role of redox-active species on NiS-NiS2 incorporated sulfur-doped graphitic carbon nitride nanohybrid as a bifunctional electrocatalyst for overall water splitting. Int. J. Hydrogen Energy 2024, 84, 641–649. [Google Scholar] [CrossRef]
- Yue, H.; Guo, Z.; Fan, J.; Wang, P.; Zhen, S.; Yuan, W. Cu intercalation and defect engineering realize an atomic-scale hydrogen spillover effect in NbS2 to boost acidic hydrogen evolution. Inorg. Chem. Front. 2024, 11, 1899–1911. [Google Scholar] [CrossRef]
- Shen, W.; Qiao, L.; Ding, J.; Sui, Y. Constructing 1 T-2 H TaS2 nanosheets with architecture and defect engineering for enhance hydrogen evolution reaction. J. Alloys Compd. 2023, 935, 167877. [Google Scholar] [CrossRef]
- Hanan, A.; Lakhan, M.N.; Solangi, M.Y.; AlSalhi, M.S.; Kumar, V.; Devanesan, S.; Shar, M.A.; Abro, M.I.; Aftab, U. MXene based electrocatalyst: CoS2@Ti3C2Tx composite for hydrogen evolution reaction in alkaline media. Mater. Today Sustain. 2023, 24, 100585. [Google Scholar] [CrossRef]
- Cui, W.; Sun, X.; Xu, S.; Li, C.; Bai, J. CoS2-CoSe2 hybrid nanoparticles grown on carbon nanofibers as electrode for supercapacitor and hydrogen evolution reaction. J. Alloys Compd. 2024, 990, 174366. [Google Scholar] [CrossRef]
- Van Nguyen, T.; Nguyen, T.P.; Van Le, Q.; Van Dao, D.; Ahn, S.H.; Kim, S.Y. Facile route for synthesizing WS2/W2C nano hollow flowers and their application for hydrogen evolution reaction. J. Alloys Compd. 2023, 955, 170231. [Google Scholar] [CrossRef]
- Sun, F.; Tian, X.; Zang, J.; Zhu, R.; Hou, Z.; Zheng, Y.; Wang, Y.; Dong, L. Constructing composite active centers optimized with Cr-doped NiS/NiS2 heterostructure for efficiently catalyzing alkaline hydrogen evolution reaction. Fuel 2024, 363, 130999. [Google Scholar] [CrossRef]
- Fu, Y.G.; Liu, H.Q.; Liu, C.; Lü, Q.F. Ultralight porous carbon loaded Co-doped MoS2 as an efficient electrocatalyst for hydrogen evolution reaction in acidic and alkaline media. J. Alloys Compd. 2023, 967, 171748. [Google Scholar] [CrossRef]
- Liu, Z.; Li, N.; Su, C.; Zhao, H.; Xu, L.; Yin, Z.; Li, J.; Du, Y. Colloidal synthesis of 1T’ phase dominated WS2 towards endurable electrocatalysis. Nano Energy 2018, 50, 176–181. [Google Scholar] [CrossRef]
- Gong, X.; Kong, D.; Pam, M.E.; Guo, L.; Fan, S.; Huang, S.; Wang, Y.; Gao, Y.; Shi, Y.; Yang, H.Y. Polypyrrole coated niobium disulfide nanowires as high performance electrocatalysts for hydrogen evolution reaction. Nanotechnology 2019, 30, 405601. [Google Scholar] [CrossRef]
- Wang, H.; Lu, Z.; Kong, D.; Sun, J.; Hymel, T.M.; Cui, Y. Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano 2014, 8, 4940–4947. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, R.; Zhang, J.; Wang, Z.; Xue, H.; Mao, W.; Huang, W. Highly active and stable electrocatalytic hydrogen evolution catalyzed by nickel, iron doped cobalt disulfide@reduced graphene oxide nanohybrid electrocatalysts. Mater. Today Energy 2018, 7, 44–50. [Google Scholar] [CrossRef]
- Salarizadeh, P.; Askari, M.B.; Seifi, M.; Rozati, S.M. MoS2 coating on different carbonaceous materials: Comparison of electrochemical properties and hydrogen evolution reaction performance. J. Electroanal. Chem. 2019, 847, 113198. [Google Scholar] [CrossRef]
- He, G.; Zhang, W.; Deng, Y.; Zhong, C.; Hu, W.; Han, X. Engineering pyrite-type bimetallic Ni-doped CoS2 nanoneedle arrays over awide compositional range for enhanced oxygen and hydrogen electrocatalysis with flexible property. Catalysts 2017, 7, 366. [Google Scholar] [CrossRef]
- Chen, P.; Zhou, T.; Chen, M.; Tong, Y.; Zhang, N.; Peng, X.; Chu, W.; Wu, X.; Wu, C.; Xie, Y. Enhanced Catalytic Activity in Nitrogen-Anion Modified Metallic Cobalt Disulfide Porous Nanowire Arrays for Hydrogen Evolution. ACS Catal. 2017, 7, 7405–7411. [Google Scholar] [CrossRef]
- Wang, C.; Lu, H.; Tang, K.; Mao, Z.; Li, Q.; Wang, X.; Yan, C. Atom removal on the basal plane of layered MoS2 leading to extraordinarily enhanced electrocatalytic performance. Electrochim. Acta 2020, 336, 135740. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Kim, S.Y.; Lee, T.H.; Jang, H.W.; Le, Q.; Van Kim, I.T. Facile synthesis of W2C@WS2 alloy nanoflowers and their hydrogen generation performance. Appl. Surf. Sci. 2020, 504, 144389. [Google Scholar] [CrossRef]
- Dinh, K.N.; Sun, Y.; Pei, Z.; Yuan, Z.; Suwardi, A.; Huang, Q.; Yan, Q. Electronic Modulation of Nickel Disulfide toward Efficient Water Electrolysis. Small 2020, 16, 1905885. [Google Scholar] [CrossRef]
- Sumesh, C.K. Zinc oxide functionalized molybdenum disulfide heterostructures as efficient electrocatalysts for hydrogen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 619–628. [Google Scholar] [CrossRef]
- Zhu, J.; Cai, L.; Yin, X.; Wang, Z.; Zhang, L.; Ma, H.; Ke, Y.; Du, Y.; Xi, S.; Wee, A.T.S.; et al. Enhanced Electrocatalytic Hydrogen Evolution Activity in Single-Atom Pt-Decorated VS2 Nanosheets. ACS Nano 2020, 14, 5600–5608. [Google Scholar] [CrossRef]
- Zainal, S.N.; Sookhakian, M.; Woi, P.M.; Alias, Y. Ternary molybdenum disulfide nanosheets-cobalt oxide nanocubes-platinum composite as efficient electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 2020, 345, 136255. [Google Scholar] [CrossRef]
- Wu, A.; Gu, Y.; Xie, Y.; Yan, H.; Jiao, Y.; Wang, D.; Tian, C. Interfacial engineering of MoS2/MoN heterostructures as efficient electrocatalyst for pH-universal hydrogen evolution reaction. J. Alloys Compd. 2021, 867, 159066. [Google Scholar] [CrossRef]
- Liu, M.; Geng, A.; Yan, J. Construction of WS2 triangular nanoplates array for hydrogen evolution reaction over a wide pH range. Int. J. Hydrogen Energy 2020, 45, 2909–2916. [Google Scholar] [CrossRef]
- He, B.; Chen, L.; Jing, M.; Zhou, M.; Hou, Z.; Chen, X. 3D MoS2-rGO@Mo nanohybrids for enhanced hydrogen evolution: The importance of the synergy on the Volmer reaction. Electrochim. Acta 2018, 283, 357–365. [Google Scholar] [CrossRef]
- Huang, J.; Chen, M.; Li, X.; Zhang, X.; Lin, L.; Liu, W.; Liu, Y. A facile layer-by-layer fabrication of three dimensional MoS2-rGO-CNTs with high performance for hydrogen evolution reaction. Electrochim. Acta 2019, 300, 235–241. [Google Scholar] [CrossRef]
- Liu, H.; He, P.; Jia, L.; He, M.; Zhang, X.; Wang, S.; Zhang, X.; Li, C.; Zhang, Y.; Dong, F. Cobalt disulfide nanosphere dispersed on multi-walled carbon nanotubes: An efficient and stable electrocatalyst for hydrogen evolution reaction. Ionics 2018, 24, 3591–3599. [Google Scholar] [CrossRef]
- Huang, D.; Lei, L.; Deng, R.; Chen, S.; Li, Z.; Zhang, C.; Wang, W.; Wang, K. The synergistic effect of proton intercalation and electron transfer via electro-activated molybdenum disulfide/graphite felt toward hydrogen evolution reaction. J. Catal. 2020, 381, 175–185. [Google Scholar] [CrossRef]
- Adam, A.; Adamu, H.; AlMansour, S.M.; Turkestani, F.A.; Obot, I.; Qamar, M. Comparative electrocatalytic behavior of mesoporous FeP and FeS2 for the hydrogen evolution reaction. Mater. Lett. 2024, 377, 137312. [Google Scholar] [CrossRef]
- Jin, H.; Sun, Y.; Sun, Z.; Yang, M.; Gui, R. Zero-dimensional sulfur nanomaterials: Synthesis, modifications and applications. Coord. Chem. Rev. 2021, 438, 213913. [Google Scholar] [CrossRef]
- Wang, X.; You, W.; Yang, L.; Chen, G.; Wu, Z.; Zhang, C.; Chen, Q.; Che, R. Enhanced electrocatalytic hydrogen evolution by molybdenum disulfide nanodots anchored on MXene under alkaline conditions. Nanoscale Adv. 2022, 4, 3398–33406. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liang, J.; Zhang, Q.; Hu, X.; Peng, W.; Li, Y.; Zhang, F.; Fan, X. Quasi zero-dimensional MoS2 quantum dots decorated 2D Ti3C2Tx MXene as advanced electrocatalysts for hydrogen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 10583–10593. [Google Scholar] [CrossRef]
- Lin, Y.; Cui, X.; Liu, P.; Wang, Z.; Zhang, X.; Yang, X.; Feng, C.; Pan, Y. CoS2 Nanoparticles Embedded N-doped Carbon Nanotubes Hollow Polyhedron for Hydrogen Evolution and Al−S Batteries. ChemCatChem 2024, 202401155. [Google Scholar] [CrossRef]
- Ji, X.; Xu, B.; Zhang, H.; Zhang, X.; Yang, P. NiS2 nanoparticles anchored on Co-carbon nanotubes for supercapacitor and overall water splitting. J. Alloys Compd. 2023, 968, 172192. [Google Scholar] [CrossRef]
- Sun, W.; Li, P.; Liu, X.; Shi, J.; Sun, H.; Tao, Z.; Li, F.; Chen, J. Size-controlled MoS2 nanodots supported on reduced graphene oxide for hydrogen evolution reaction and sodium-ion batteries. Nano Res. 2017, 10, 2210–2222. [Google Scholar] [CrossRef]
- Li, J.; Zheng, G. One-dimensional earth-abundant nanomaterials for water-splitting electrocatalysts. Adv. Sci. 2017, 4, 1600380. [Google Scholar] [CrossRef]
- Li, P.; Chen, W. Recent advances in one-dimensional nanostructures for energy electrocatalysis. Chin. J. Catal. 2019, 40, 4–22. [Google Scholar] [CrossRef]
- Yang, Y.; Li, C.; Ma, X.; Li, S.; Li, X.; Du, X.; Hao, X.; Abudula, A.; Guan, G. One-dimensional CoMoS4 nanorod arrays as an efficient electrocatalyst for hydrogen evolution reaction. J. Alloys Compd. 2020, 821, 153245. [Google Scholar] [CrossRef]
- Zhai, S.; Feng, Y.; Yuan, Z.Y. Engineering one-dimensional transition metal compound nanostructures for electrocatalytic hydrogen evolution: Overview and perspectives. Int. J. Hydrogen Energy 2023, 48, 34677–34699. [Google Scholar] [CrossRef]
- Dutta, A.; Krishnappa, M.; Porat, H.; Lavi, R.; Lal, A.; Yadav, M.K.; Mandic, V.; Makrinich, G.; Lakhiman, A.; Zak, A.; et al. Plasma-treated 1D transition metal dichalcogenides for efficient electrocatalytic hydrogen evolution reaction. J. Mater. Chem. A 2024, 12, 25176–25185. [Google Scholar] [CrossRef]
- Van Nguyen, T.; Huynh, K.A.; Le, Q.V.; Ahn, S.H.; Kim, S.Y. Facile Synthesis of WS2/WO3Materials in a Batch Reactor for the Hydrogen Evolution Reaction. Int. J. Energy Res. 2024, 2024, 4878549. [Google Scholar] [CrossRef]
- Abdullah, M.; Alyousef, H.A.; Alotaibi, B.M.; Alrowaily, A.W.; Al-Harbi, N.; Henaish, A.M.A.; Dahshan, A. Hydrothermal synthesis of NiS2@SnS2 nanohybrid for the water splitting application. Mater. Chem. Phys. 2024, 319, 129361. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, H.; Zhang, X.; Zhao, C.; Yao, J.; Yan, Q.; Zhan, K.; Cao, D.; Wang, G. Construction of tubular carbon matrix-supported NiCoP-NiS2 nanowires with heterointerfaces for overall water splitting. Colloids Surf. A Physicochem. Eng. Asp. 2023, 656, 130516. [Google Scholar] [CrossRef]
- Liu, F.; Wang, F.; Sun, X.; Wang, Y.; Liu, Y.; Zhang, S.; Li, Y.; Xue, Y.; Zhang, J.; Tang, C. Plasma-induced vacancies in CoS2 electrocatalysts to activate sulfur sites for hydrogen evolution reaction. Int. J. Hydrogen Energy 2024, 58, 941–947. [Google Scholar] [CrossRef]
- Nan, J.; Ye, B.; Peng, S.; Zhang, W.; Liu, H.; Zhang, Y. Self-support P-doped CoS2 as efficient hybrid nano-electrocatalysts for hydrogen evolution in acid and alkaline solutions. Mater. Lett. 2024, 354, 2–5. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, G.; Sun, W. Strategies of engineering 2D nanomaterial-based electrocatalysts toward hydrogen evolution reaction. Mater. Renew. Sustain. Energy 2020, 9, 10. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; Jiang, B.; Li, J.; Zeng, M.; Fu, L. Emerging two-dimensional nanomaterials for electrochemical hydrogen evolution. J. Mater. Chem. A 2017, 5, 8187–8208. [Google Scholar] [CrossRef]
- Yang, L.; Liu, P.; Li, J.; Xiang, B. Two-dimensional material molybdenum disulfides as electrocatalysts for hydrogen evolution. Catalysts 2017, 7, 285. [Google Scholar] [CrossRef]
- Zhu, Q.; Qu, Y.; Liu, D.; Ng, K.W.; Pan, H. Two-Dimensional Layered Materials: High-Efficient Electrocatalysts for Hydrogen Evolution Reaction. ACS Appl. Nano Mater. 2020, 3, 6270–6296. [Google Scholar] [CrossRef]
- Duc, D.A.; The, N.D.; Ha, D.H.; Phuong, N.T.T.; Manh, L.D. Comparative study on various morphologies of WS2 for electrochemical hydrogen evolution reaction. J. Sci. Technol. 2024, 6, 7. [Google Scholar] [CrossRef]
- Homayounfard, A.M.; Maleki, M.; Ghanbari, H.; Kahnamouei, M.H.; Safaei, B. Growth of few-layer flower-like MoS2 on heteroatom-doped activated carbon as a hydrogen evolution reaction electrode. Int. J. Hydrogen Energy 2024, 55, 1360–1370. [Google Scholar] [CrossRef]
- Li, P.Z.; Chen, N.; Al-Hamry, A.; Sheremet, E.; Lu, R.; Yang, Y.; Kanoun, O.; Baumann, R.R.; Rodriguez, R.D.; Chen, J.J. Inkjet-printed MoS2-based 3D-structured electrocatalysts on Cu films for ultra-efficient hydrogen evolution reaction. Chem. Eng. J. 2023, 457, 141289. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, D.; Luo, S.; Wang, Q.; Jiang, L.; Wei, G.F.; Wang, X. Incorporation of tungsten nanoparticles on WS2 film for the enhanced hydrogen evolution. Int. J. Hydrogen Energy 2024, 59, 645–653. [Google Scholar] [CrossRef]
- Li, C.; Zhu, L.; Wu, Z.; Chen, Q.; Zheng, R.; Huan, J.; Huang, Y.; Zhu, X.; Sun, Y. Phase Engineering of W-Doped MoS2 by Magneto-Hydrothermal Synthesis for Hydrogen Evolution Reaction. Small 2023, 19, 2303646. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Wan, L.; Liu, X.; Cao, L.; Hu, Y.; Dong, B. Anchoring Pt nanoparticle onto monolayer VS2 nanosheets boost efficient acidic hydrogen evolution. Int. J. Hydrogen Energy 2024, 74, 384–391. [Google Scholar] [CrossRef]
- Zhao, H.; Zhu, Y.P.; Yuan, Z.Y. Three-Dimensional Electrocatalysts for Sustainable Water Splitting Reactions. Eur. J. Inorg. Chem. 2016, 2016, 1916–1923. [Google Scholar] [CrossRef]
- Yun, Q.; Lu, Q.; Zhang, X.; Tan, C.; Zhang, H. Three-Dimensional Architectures Constructed from Transition-Metal Dichalcogenide Nanomaterials for Electrochemical Energy Storage and Conversion. Angew. Chem. Int. Ed. 2018, 57, 626–646. [Google Scholar] [CrossRef]
- Dong, H.; Liu, C.; Ye, H.; Hu, L.; Fugetsu, B.; Dai, W.; Cao, Y.; Qi, X.; Lu, H.; Zhang, X. Three-dimensional nitrogen-doped graphene supported molybdenum disulfide nanoparticles as an advanced catalyst for hydrogen evolution reaction. Sci. Rep. 2015, 5, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Kumari, R.; Sammi, A.; Shubhangi; Srivastava, A.; Azad, U.P.; Chandra, P. Emerging 3D nanomaterials as electrocatalysts for water splitting reactions. Int. J. Hydrogen Energy 2024, 74, 214–231. [Google Scholar] [CrossRef]
- Huang, S.; Ma, S.; Liu, L.; Jin, Z.; Gao, P.; Peng, K.; Jiang, Y.; Naseri, A.; Hu, Z.; Zhang, J. P-doped Co3S4/NiS2 heterostructures embedded in N-doped carbon nanoboxes: Synergistical electronic structure regulation for overall water splitting. J. Colloid Interface Sci. 2023, 652, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.; Li, Y.; Yang, J.; Lu, T.; Liu, X.; Chen, X.; Pan, L.; Zhao, Z. Fe-Doped CoS2 Nanocages as Bifunctional Electrocatalysts for Water Splitting. ACS Appl. Nano Mater. 2024, 7, 9685–9695. [Google Scholar] [CrossRef]
- Xia, L.; Pan, K.; Wu, H.; Wang, F.; Zhao, N.; Yu, H.; Ren, Y.; Chang, M.; Dong, Z.; Wei, S. Ultra-thin WS2 decorated Co-based Metal-organic framework derived materials for synergistic electrocatalysis towards pH-Universal hydrogen evolution reaction. J. Phys. Chem. Solids 2024, 184, 111708. [Google Scholar] [CrossRef]
- Peng, Y.; Zhu, L.; Li, C.; Hu, J.; Lu, Y.; Fu, J.; Cui, F.; Wang, X.; Cao, A.; Ji, Q.; et al. Highly Stable Vertically Oriented 2H-NbS2 Nanosheets on Carbon Nanotube Films toward Superior Electrocatalytic Activity. Adv. Energy Mater. 2024, 14, 2302510. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, X.; Yu, X.; Liu, Y.; Li, J.; Liu, Z.; Zho, N.; Zhang, J.; Niu, J.; Feng, Q. Modulating the electronic structure of VS2via Ru decoration for an efficient pH-universal electrocatalytic hydrogen evolution reaction. Nanoscale 2024, 16, 11250–11261. [Google Scholar] [CrossRef]
- Zavala, L.A.; Kumar, K.; Martin, V.; Maillard, F.; Maugé, F.; Portier, X.; Oliviero, L.; Dubua, L. Direct Evidence of the Role of Co or Pt, Co Single-Atom Promoters on the Performance of MoS2 Nanoclusters for the Hydrogen Evolution Reaction. ACS Catal. 2023, 13, 1221–1229. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, T.; Li, J.; Zhang, Q.; Li, B.; Gao, M. Construction of Ru, O Co-Doping MoS2 for Hydrogen Evolution Reaction Electrocatalyst and Surface-Enhanced Raman Scattering Substrate: High-Performance, Recyclable, and Durability Improvement. Adv. Funct. Mater. 2023, 33, 2210939. [Google Scholar] [CrossRef]
- Xu, Y.; Cheng, J.; Lv, H.; Zhang, K.; Hu, A.; Yang, X. Cactus-like amorphous MoS2-CoFeLDO heterostructures for alkaline hydrogen evolution reaction. Chem. Eng. J. 2023, 470, 144344. [Google Scholar] [CrossRef]
- Wang, R.; Chen, Q.; Liu, X.; Hu, Y.; Cao, L.; Dong, B. Synergistic Effects of Dual-Doping with Ni and Ru in Monolayer VS2 Nanosheet: Unleashing Enhanced Performance for Acidic HER through Defects and Strain. Small 2024, 20, 2311217. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S. Electrocatalytic Water Splitting. In Photo-and Electro-Catalytic Processes: Water Splitting, N 2022; John Willy Sons: Hoboken, NJ, USA, 2022; pp. 123–158. [Google Scholar] [CrossRef]
- Pei, C.; Kim, M.C.; Li, Y.; Xia, C.; Kim, J.; So, W.; Yu, X.; Park, H.S.; Kim, J.K. Electron Transfer-Induced Metal Spin-Crossover at NiCo2S4/ReS2 2D–2D Interfaces for Promoting pH-universal Hydrogen Evolution Reaction. Adv. Funct. Mater. 2023, 33, 2210072. [Google Scholar] [CrossRef]
- Kim, G.; Jung, S.M.; Giri, A.; Kim, J.S.; Kim, Y.W.; Kim, K.S.; Choi, Y.; Lee, B.; Kim, Y.T.; Jeong, U. Enhanced hydrogen desorption via charge transfer in Pt Nanoclusters/ReS2 hybrid electrocatalyst for efficient hydrogen evolution reaction. J. Power Sources 2023, 579, 233287. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, X.; Zong, H.; Xu, H.Z.; Xu, J.; Liu, J. Facile construction Co-doped and CeO2 heterostructure modified NiS2 grown on foamed nickel for high-performance bifunctional water electrolysis catalysts. Int. J. Hydrogen Energy 2024, 51, 314–322. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Song, W.; Zhang, Y.; Hou, Z.; Zhou, G.; Zhou, Z.; Liu, J. In-situ growth of ReS2/NiS heterostructure on Ni foam as an ultra-stable electrocatalyst for alkaline hydrogen generation. Chem. Eng. J. 2023, 451, 138905. [Google Scholar] [CrossRef]
- Yao, C.; Wang, Q.; Peng, C.; Wang, R.; Liu, J.; Tsidaeva, N.; Wang, W. MOF-derived CoS2/WS2 electrocatalysts with sulfurized interface for high-efficiency hydrogen evolution reaction: Synthesis, characterization and DFT calculations. Chem. Eng. J. 2024, 479, 147924. [Google Scholar] [CrossRef]
- Trivedi, N.A.; Sharma, P.J.; Joshi, K.K.; Patel, V.; Sumesh, C.K.; Pataniya, P.M. ReS2/CoS heterostructure catalysts for electrochemical application in hydrogen evolution and supercapacitor. Int. J. Hydrogen Energy 2024, 61, 1212–1219. [Google Scholar] [CrossRef]
- Li, X.; Han, S.; Qiao, Z.; Zeng, X.; Cao, D.; Chen, J. Ru monolayer island doped MoS2 catalysts for efficient hydrogen evolution reaction. Chem. Eng. J. 2023, 453, 139803. [Google Scholar] [CrossRef]
- Ghising, R.B.; Pan, U.N.; Kandel, M.R.; Dhakal, P.P.; Sidra, S.; Kim, D.H.; Kim, N.H.; Lee, J.H. Ruthenium single atoms implanted on NiS2-FeS2 nanosheet heterostructures for efficacious water electrolysis. J. Mater. Chem. A 2024, 12, 3489–3500. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.; Xiong, Y.; He, Y.; Sun, Q.; Xu, D.; Hu, Z. Self-supported monometallic FeS2/FeOOH-ZnO@NF with abundant oxygen vacancies as efficient and stable electrocatalysts for the OER and HER. J. Alloys Compd. 2024, 991, 174525. [Google Scholar] [CrossRef]
- Zhan, W.; Liu, G.; Lang, L.; Gao, X.S.; Zheng, B.; Zhang, J.; Luo, G.; Hu, L.; Chen, W. Sulfur vacancy riched pure 2H phase VS2 for efficient electrocatalytic hydrogen evolution. J. Electroanal. Chem. 2024, 971, 118609. [Google Scholar] [CrossRef]
- Tang, J.; Huang, J.; Zhang, S.; Liu, Z.; Deng, X. Synergistic Low-Pt Modification and Ni Doping Facilitate the MoS2 Phase Transition for Accelerating the Hydrogen Evolution Reaction. Energy Fuels 2023, 37, 14914–14921. [Google Scholar] [CrossRef]
- Di, F.; Wang, X.; Farid, S.; Ren, S. CoS2 with carbon shell for efficient hydrogen evolution reaction. Int. J. Hydrogen Energy 2023, 48, 17758–17768. [Google Scholar] [CrossRef]
- Zhao, W.K.; Ma, Z.Q.; Zheng, J.Y.; Han, C.B.; Zhou, K.L.; Hao, M.Y.; Fang, D.C.; Xia, Y.; Yan, X. Dual-functional MnS2/MnO2 heterostructure catalyst for efficient acidic hydrogen evolution reaction and assisted degradation of organic wastewater. J. Energy Chem. 2023, 87, 215–224. [Google Scholar] [CrossRef]
- Mariappan, A.; Dharman, R.K.; Oh, T.H. Metal-organic frameworks derived FeS2@CoS2 heterostructure for efficient and stable bifunctional electrocatalytic water splitting. Ceram. Int. 2023, 49, 29984–29990. [Google Scholar] [CrossRef]
Sr No. | Materials | Morphology of TMDs | Synthesis Method | Overpotential η [mV] at Current Density 10 mA cm−2 | Tafel Slope [mV dec−1] | Electrolyte | Ref. |
---|---|---|---|---|---|---|---|
1. | 1T’ phase WS2 | Nanoparticles | Colloidal synthesis | 200 | 50.4 | 0.5 M H2SO4 | [64] |
2. | MoS2 | Nanoparticles | Pyrolysis and sulfurization methods | 200 | 62 | 0.5 M H2SO4 | [66] |
3. | CNFS@rGO | Nanoparticles | Hydrothermal | 138 | 49 | 0.5 M H2SO4 | [67] |
4. | MoS2/rGO | Nanoparticles | Hydrothermal | 70 | 44 | 0.5 M H2SO4 | [68] |
MoS2/MWCNT | 190 | 73 | |||||
5. | Graphdiyne-CoS2 | Nanowires | - | 97 | 56 | 1 M KOH | [52] |
6. | NbS2-PPy | Nanowires | Chemical vapor deposition | 219 | 56 | - | [65] |
7. | Ni-doped CoS2 (Ni0.33Co0.67S2 NN/SS) | Nanoneedle | Hydrothermal | 350 | 76 | 1 M KOH | [69] |
8. | N−CoS2 | Nanowires | Hydrothermal | 152 | 58 | 0.5 M H2SO4 | [70] |
9. | MoS2 | Nanosheets | - | 200 | 65 | - | [71] |
10. | W2C@WS2 | Nanoflowers | Hydrothermal | 170 | 55.4 | 0.5 M H2SO4 | [72] |
11. | Cu-doped NiS2 | Nanosheets | - | 139 | 77 | 1 M KOH | [73] |
12. | MoS2.ZnO | Nanoflakes | Microwave-assisted method | 239 | 62 | 0.5 M H2SO4 | [74] |
13. | Pt-decorated VS2 | Nanosheets | Hydrothermal | 77 | 54.27 | 0.5 M H2SO4 | [75] |
14. | Mo-Co-Pt | Nanosheets nanocubes | Hydrothermal | 20 | 34 | 0.5 M H2SO4 | [76] |
15. | MoS2/MoN | Nanospheres | Hydrothermal | 117 | 87 | 0.5 M H2SO4 | [77] |
132 | 98 | 1 M KOH | |||||
16. | WS2TN/CC | Triangular nanoplates | Hydrothermal | 196 | 87 | 0.5 M H2SO4 | [78] |
150 | 200 | 1.0 M PBS | |||||
193 | 170 | 1 M KOH | |||||
17. | MoS2-rGO@Mo | Nanosheets | Hummers method Hydrothermal | 123 | 62 | 1 M KOH | [79] |
18. | VF-MoS2-rGO-CNTs | Hybrid | Hydrothermal | 400 | 39 | 0.5 M H2SO4 | [80] |
19. | CoS2/MWCNTs | Nanospheres | Hydrothermal | 257 | 83 | 0.5 M H2SO4 | [81] |
20. | MoS2/GF | Flower-like structure | Hydrothermal | 82 | 48 | 0.5 M H2SO4 | [82] |
Sr No. | Materials | Morphology of TMDs | Synthesis Method | Overpotential η [mV] at Current Density 10 mA cm−2 | Tafel Slope [mV dec −1] | Electrolyte | Ref. |
---|---|---|---|---|---|---|---|
1. | Ru–VS2/CC | Nanoparticles | Hydrothermal | 89 | 63 | 0.5 M H2SO4 | [118] |
2. | Pt1%−CoMoS2/C | Nanoclusters | Incipient wetness impregnation method | 118 | 68 | 0.5 M H2SO4 | [119] |
3. | MSOR1 (Ru co-doped MoS2) | Flower-like nanosphere | Hydrothermal | 197 | 63.1 | 0.5 M H2SO4 | [120] |
43 | 75.8 | 1.0 M KOH | |||||
4. | MoS2-CoFeLDH | Nanoneedle (cactus-like spherical) | Hydrothermal, Electrodeposition | 36 | 235 | 1.0 M KOH | [121] |
5. | SL-Ni-Ru-VS2 | Nanosheets | Colloidal | 20 | 34.14 | 0.5 M H2SO4 | [122] |
6. | NiFe LDH/NiS2/VS2 | Nanosheets | Hydrothermal | 76 | 79 | 1.0 M KOH | [123] |
7. | NiCo2S4/ReS2 | Nanosheets | Hydrothermal | 126 | 67.8 | 0.5 M H2SO4 | [124] |
85 | 78.3 | 1.0 M KOH | |||||
8. | Pt/ReS2 | Nanoflowers | Microwave-assisted hydrothermal method, Wet-impregnation method | 20 | 31.5 | Ar-saturated 0.1 M HClO4 | [125] |
9. | Co-NiS2/CeO2/NF | Nanosheets | Hydrothermal | 84 | 115.3 | 1.0 M KOH | [126] |
10. | ReS2/NiS | Nanosheets | Hydrothermal | 78 | 76 | 1.0 M KOH | [127] |
11. | CoS2/WS2 | Nanosheets | Hydrothermal | 79 | 52 | 0.5 M H2SO4 | [128] |
12. | ReS2/CoS | Nanosheets | Hydrothermal | 187 | 61 | 1.0 M KOH | [129] |
13. | Ru MIs-doped MoS2 | Nanosheets | Hydrothermal | 17 | 63 | 1.0 M KOH | [130] |
14. | RuSA-NiS2-FeS2 | Nanosheets | Hydrothermal | 57 | 59.4 | 1.0 M KOH | [131] |
15. | FeS2/FeOOH-ZnO@NF | Nanoplates | Hydrothermal | 74 | 105.79 | 1.0 M KOH | [132] |
16. | 2H–VS2 | Nanoflower | Hydrothermal | 181 | 52 | 0.5 M H2SO4 | [133] |
17. | Pt@1T-MoS2−Ni | Petal-like nanosheets | Hydrothermal | 76 | 46 | 1.0 M KOH | [134] |
18. | CoS2@NHCs-800 | Microspheres | Hydrothermal | 98 | 85 | 0.5 M H2SO4 | [135] |
118 | 157 | 1.0 M KOH | |||||
19. | MnS2/MnO2-CC | Heterostructure | Electrodeposition | 66 | 26.72 | 0.5 M H2SO4 | [136] |
20. | FeS2@CoS2 | Heterostructure | Hydrothermal | 136 | 58 | 1.0 M KOH | [137] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakkanawar, S.S.; Chavan, V.D.; Kim, D.-K.; Bhat, T.S.; Yadav, H.M. Tuning the Morphology of Transition Metal Disulfides: Advances in Electrocatalysts for Hydrogen Evolution Reaction. Hydrogen 2024, 5, 776-799. https://doi.org/10.3390/hydrogen5040041
Jakkanawar SS, Chavan VD, Kim D-K, Bhat TS, Yadav HM. Tuning the Morphology of Transition Metal Disulfides: Advances in Electrocatalysts for Hydrogen Evolution Reaction. Hydrogen. 2024; 5(4):776-799. https://doi.org/10.3390/hydrogen5040041
Chicago/Turabian StyleJakkanawar, Shravani S., Vijay D. Chavan, Deok-Kee Kim, Tejasvinee S. Bhat, and Hemraj M. Yadav. 2024. "Tuning the Morphology of Transition Metal Disulfides: Advances in Electrocatalysts for Hydrogen Evolution Reaction" Hydrogen 5, no. 4: 776-799. https://doi.org/10.3390/hydrogen5040041
APA StyleJakkanawar, S. S., Chavan, V. D., Kim, D. -K., Bhat, T. S., & Yadav, H. M. (2024). Tuning the Morphology of Transition Metal Disulfides: Advances in Electrocatalysts for Hydrogen Evolution Reaction. Hydrogen, 5(4), 776-799. https://doi.org/10.3390/hydrogen5040041