Sustainable Production of Green Oxy-Hydrogen from Vehicles’ Air Conditioning Drains to Enhance Engine Efficiency and Reduce Greenhouse Gas Emissions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development of HHO Gas Dry Generator
2.2. Fabrication of the HHO Gas Electrolyzer
2.3. The Input Used to Generate HHO Gas
2.4. Cell Efficiency
3. Experimental Procedure
3.1. Produce HHO Gas
3.2. Engine Testing Equipment
4. Results and Discussions
4.1. Temperature Versus Time
4.2. Production Range for HHO Compared to Current Supply
4.3. The Influence of Fuel Types on the Efficacy of Electronic Fuel Injection Engines
4.4. Brake-Specific Fuel Consumption (BSFC)
4.5. Brake Thermal Efficiency
4.6. The Temperature of the Exhaust Gas (EGT)
4.7. Volumetric Efficiency
4.8. Air–Fuel
4.9. Emission of Carbon Monoxide
4.10. Emissions of Carbon Dioxide
4.11. Emission of Nitrogen Oxides
4.12. Emission of Hydrocarbons
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
BP | Brake power (kW) | ρ | Density (kg/m2) |
HHO | Oxy-hydrogen gas | LHV | The lower heating value |
SIE | The spark ignition engine | N | Engine speed (RPM) |
PWM | Pulse width modulation | n | No. of neutral plates per stack |
EFI | Electronic fuel injection | BTE | Brake thermal efficiency |
BSFC | Brake-specific fuel consumption | NS | The number of stacks |
NOx | Nitrogen oxides | DW | Distilled water |
ACD | Air conditioner drain | NC | The number of cells |
m | Mass flow rates | pH | Potential of hydrogen |
TDS | Total dissolved solids | BTE | Braking thermal efficiency |
EGT | Exhaust gas temperature °C | T | Torque developed due to the net load on the engine (N.m.) |
DC | Direct current | AWE | Alkaline water electrolysis |
ppm | Parts per million | SOECs | Solid oxide electrolysis cells |
References
- Bhandari, M.; Prajapati, S.K. Use of reverse osmosis reject from drinking water plant for microalgal biomass production. Water Res. 2022, 210, 117989. [Google Scholar] [CrossRef] [PubMed]
- Andreeva, A.; Budenkova, E.; Babich, O.; Sukhikh, S.; Ulrikh, E.; Ivanova, S.; Prosekov, A.; Dolganyuk, V. Production, purification, and study of the amino acid composition of microalgae proteins. Molecules 2021, 26, 2767. [Google Scholar] [CrossRef] [PubMed]
- Sovacool, B.K.; Griffiths, S.; Kim, J.; Bazilian, M. Climate change and industrial F-gases: A critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions. Renew. Sustain. Energy Rev. 2021, 141, 110759. [Google Scholar] [CrossRef]
- Babu, J.; Kumar, K.S.; Kumar, R.R.; Ağbulut, Ü.; Razak, A.; Thakur, D.; Sundara, V.; Asif, M. Production of HHO gas in the water-electrolysis unit and the influences of its introduction to CI engine along with diesel-biodiesel blends at varying injection pressures. Int. J. Hydrogen Energy 2024, 52, 865–885. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Q.; Kang, X.; Hou, B.; Zhu, Y.; Zhou, H. Comparative experimental study on the co-firing characteristics of water electrolysis gas (HHO) and lean coal/lignite with different injection modes in a one-dimensional furnace. Fuel 2024, 378, 132968. [Google Scholar] [CrossRef]
- Mousa, A.M.; Sayed, H.A.; Ali, K.A.; Elkaoud, N.S.; Mahmoud, W.A. Energy-conversion efficiency for producing oxy-hydrogen gas using a simple generator based on water electrolysis. Sci. Rep. 2024, 14, 25312. [Google Scholar] [CrossRef]
- Myat, A. Application of Artificial Intelligence in Air Conditioning Systems. In Recent Updates in HVAC Systems; IntechOpen: London, UK, 2022. [Google Scholar]
- Castro, P.J.; Aráujo, J.M.; Martinho, G.; Pereiro, A.B. Waste management strategies to mitigate the effects of fluorinated greenhouse gases on climate change. Appl. Sci. 2021, 11, 4367. [Google Scholar] [CrossRef]
- Weckerle, C.; Bürger, I.; Linder, M. Novel reactor design for metal hydride cooling systems. Int. J. Hydrogen Energy 2017, 42, 8063–8074. [Google Scholar] [CrossRef]
- Gillet, T.; Andres, E.; El-Bakkali, A.; Lemort, V.; Rulliere, R.; Haberschill, P. Sleeping evaporator and refrigerant maldistribution: An experimental investigation in an automotive multi-evaporator air-conditioning and battery cooling system. Int. J. Refrig. 2018, 90, 119–131. [Google Scholar] [CrossRef]
- Yang, X.; Dong, C.; Qu, Z. Design and dynamic analysis of a novel double-swing vane compressor for electric vehicle air conditioning systems. Int. J. Refrig. 2017, 76, 52–62. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, S.E.; Deng, K.; Zhang, Q.; Canova, M. Modeling air conditioning system with storage evaporator for vehicle energy management. In Automotive Air Conditioning: Optimization, Control and Diagnosis; Springer: Cham, Switzerland, 2016; pp. 247–266. [Google Scholar]
- Anwer, E.A.; Abdulmajeed, B.A. Electrocoagulation for Treatment of Simulated Blowdown Water Of Cooling Tower. J. Eng. 2020, 26, 1–14. [Google Scholar] [CrossRef]
- Matarneh, S.; AlQaraleh, L.; Alkhrissat, T.; Abdel-Jaber, M. Assessing water production from air conditioning systems as an unconventional supply source: A focus on water quality and social acceptance perspectives. Case Stud. Chem. Environ. Eng. 2024, 9, 100585. [Google Scholar] [CrossRef]
- Moosa, I.S.; Al-Iessi, L.M.R.; Kazem, H.A. Freshwater production and solar disinfection of water released from the air-conditioning cooling system: An experimental investigation. Renew. Energy Environ. Sustain. 2020, 5, 9. [Google Scholar] [CrossRef]
- Algarni, S.; Saleel, C.; Mujeebu, M.A. Air-conditioning condensate recovery and applications—Current developments and challenges ahead. Sustain. Cities Soc. 2018, 37, 263–274. [Google Scholar] [CrossRef]
- Sebbahi, S.; Nabil, N.; Alaoui-Belghiti, A.; Laasri, S.; Rachidi, S.; Hajjaji, A. Assessment of the three most developed water electrolysis technologies: Alkaline water electrolysis, proton exchange membrane and solid-oxide electrolysis. Mater. Today Proc. 2022, 66, 140–145. [Google Scholar] [CrossRef]
- Coutanceau, C.; Baranton, S.; Audichon, T. Hydrogen Electrochemical Production; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Chi, J.; Yu, H. Water electrolysis based on renewable energy for hydrogen production. Chin. J. Catal. 2018, 39, 390–394. [Google Scholar] [CrossRef]
- Kundu, P.P.; Dutta, K. Progress and Recent Trends in Microbial Fuel Cells; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Paparao, J.; Murugan, S. Oxy-hydrogen gas as an alternative fuel for heat and power generation applications—A review. Int. J. Hydrogen Energy 2021, 46, 37705–37735. [Google Scholar] [CrossRef]
- Liu, G.; Sheng, Y.; Ager, J.W.; Kraft, M.; Xu, R. Research advances towards large-scale solar hydrogen production from water. EnergyChem 2019, 1, 100014. [Google Scholar] [CrossRef]
- Jia, J.; Seitz, L.C.; Benck, J.D.; Huo, Y.; Chen, Y.; Ng, J.W.D.; Bilir, T.; Harris, J.S.; Jaramillo, T.F. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat. Commun. 2016, 7, 13237. [Google Scholar] [CrossRef]
- KV, S.; Chitragar, P.; GN, K. Hydrogen addition on combustion and emission characteristics of high speed spark ignition engine-An experimental study. J. Eng. Sci. Technol. 2016, 11, 1554–1564. [Google Scholar]
- Patil, N.; Chavan, C.; More, A.; Baskar, P. Generation of oxy-hydrogen gas and its effect on performance of spark ignition engine. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 062036. [Google Scholar] [CrossRef]
- Joshi, N.; Naik, D. Onboard production of hydrogen gas for power generation. Quest J. J. Res. Mech. Eng. 2015, 2, 1–11. [Google Scholar]
- Hassan, H.; Aissa, W.A.; Eissa, M.S.; Abdel-Mohsen, H.S. Enhancement of the performance and emissions reduction of a hydroxygen-blended gasoline engine using different catalysts. Appl. Energy 2022, 326, 119979. [Google Scholar] [CrossRef]
- Zhao, Z.; Huang, Y.; Yu, X.; Sun, P.; Li, M.; Shi, W.; Guo, Z.; Wang, T. Effect of HHO addition on combustion and emission in SI engine with butanol direct injection and gasoline port injection. Case Stud. Therm. Eng. 2023, 42, 102746. [Google Scholar] [CrossRef]
- Saravanan, C.; Varuvel, E.G.; Vikneswaran, M.; Femilda Josephin, J.; Chinnathambi, A.; Pugazhendhi, A.; Allasi, H.L. The combustion of lemon peel oil/gasoline blends in spark ignition engine with high-insulation piston crown coating. Sci. Rep. 2024, 14, 28740. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, A.C. Conjoint impact of modified HHO system, compression ratio variation, and tribological enhancement of steel piston ring substrates on performance and emission characteristics of a spark-ignition engine. Int. J. Hydrogen Energy 2024, 77, 54–68. [Google Scholar] [CrossRef]
- Gad, M.; El Soly, A. Improvements of combustion, emissions and exergy in petrol engine using oxyhydrogen from different configurations. Int. J. Hydrogen Energy 2024, 49, 1020–1032. [Google Scholar] [CrossRef]
- Mi, S.; Shi, Z.; Wu, H.; Zheng, L.; Zhao, W.; Qian, Y.; Lu, X. Expanding high ammonia energy ratios in an ammonia-diesel dual-fuel engine across wide-range rotational speeds. Appl. Therm. Eng. 2024, 251, 123608. [Google Scholar] [CrossRef]
- Krishna, V.M.; Reddy, A.H.; Kumar, M.S.; Raghu, A. Effect of hydroxy gas addition on performance and exhaust emissions in variable compression spark ignition engine. Mater. Today Proc. 2020, 24, 930–936. [Google Scholar] [CrossRef]
- Arjun, T.; Atul, K.; Muraleedharan, A.P.; Walton, P.A.; Bijinraj, P.; Raj, A.A. A review on analysis of HHO gas in IC engines. Mater. Today Proc. 2019, 11, 1117–1129. [Google Scholar] [CrossRef]
- Ismail, T.M.; Ramzy, K.; Abelwhab, M.; Elnaghi, B.E.; Abd El-Salam, M.; Ismail, M. Performance of hybrid compression ignition engine using hydroxy (HHO) from dry cell. Energy Convers. Manag. 2018, 155, 287–300. [Google Scholar] [CrossRef]
- Wang, S.; Ji, C.; Zhang, J.; Zhang, B. Improving the performance of a gasoline engine with the addition of hydrogen–oxygen mixtures. Int. J. Hydrogen Energy 2011, 36, 11164–11173. [Google Scholar] [CrossRef]
- Adaileh, W.M.; AlQdah, K.S. Performance improvement and emission reduction of gasoline engine by adding hydrogen gas into the intake manifold. Mater. Today Proc. 2022, 60, 1769–1778. [Google Scholar] [CrossRef]
- Salek, F.; Zamen, M.; Hosseini, S.V. Experimental study, energy assessment and improvement of hydroxy generator coupled with a gasoline engine. Energy Rep. 2020, 6, 146–156. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Ruedy, R.; Lacis, A.; Oinas, V. Global warming in the twenty-first century: An alternative scenario. Proc. Natl. Acad. Sci. USA 2000, 97, 9875–9880. [Google Scholar] [CrossRef]
- Schulte, I.; Hart, D.; Van der Vorst, R. Issues affecting the acceptance of hydrogen fuel. Int. J. Hydrogen Energy 2004, 29, 677–685. [Google Scholar] [CrossRef]
- Gutarevych, Y.; Shuba, Y.; Matijošius, J.; Karev, S.; Sokolovskij, E.; Rimkus, A. Intensification of the combustion process in a gasoline engine by adding a hydrogen-containing gas. Int. J. Hydrogen Energy 2018, 43, 16334–16343. [Google Scholar] [CrossRef]
- Karagöz, Y.; Yüksek, L.; Sandalcı, T.; Dalkılıç, A. An experimental investigation on the performance characteristics of a hydroxygen enriched gasoline engine with water injection. Int. J. Hydrogen Energy 2015, 40, 692–702. [Google Scholar] [CrossRef]
- Wang, S.; Ji, C.; Zhang, B.; Liu, X. Performance of a hydroxygen-blended gasoline engine at different hydrogen volume fractions in the hydroxygen. Int. J. Hydrogen Energy 2012, 37, 13209–13218. [Google Scholar] [CrossRef]
- Gad, M.; El-Shafay, A.; Ağbulut, Ü.; Panchal, H. Impact of produced oxyhydrogen gas (HHO) from dry cell electrolyzer on spark ignition engine characteristics. Int. J. Hydrogen Energy 2024, 49, 553–563. [Google Scholar] [CrossRef]
- Manu, P.; Sunil, A.; Jayaraj, S. Experimental investigation using an on-board dry cell electrolyzer in a CI engine working on dual fuel mode. Energy Procedia 2016, 90, 209–216. [Google Scholar] [CrossRef]
- Kong, X.; Wang, Y. Applications of Oxyhydrogen, Direct Water Injection, and Early-Intake Valve Closure Technologies on a Petrol Spark Ignition Engine—A Path towards Zero-Emission Hydrogen Internal Combustion Engines. Energies 2024, 17, 2014. [Google Scholar] [CrossRef]
- Shi, W.; Li, Z.; Zhao, Z.; Yu, X.; Sun, P.; Sang, T.; Dong, W.; Li, M. A renewable clean energy application: Oxyhydrogen negative pressure inhalation for enhancing the combustion and emission characteristics of isopropanol/gasoline dual-fuel combined injection engine. Energy 2024, 290, 130214. [Google Scholar] [CrossRef]
- El-Kassaby, M.M.; Eldrainy, Y.A.; Khidr, M.E.; Khidr, K.I. Effect of hydroxy (HHO) gas addition on gasoline engine performance and emissions. Alex. Eng. J. 2016, 55, 243–251. [Google Scholar] [CrossRef]
- Parthasarathy, M.; Lalvani, J.I.J.; Dhinesh, B.; Annamalai, K. Effect of hydrogen on ethanol–biodiesel blend on performance and emission characteristics of a direct injection diesel engine. Ecotoxicol. Environ. Saf. 2016, 134, 433–439. [Google Scholar] [CrossRef]
- Pradhan, C.; Senapati, M.K.; Malla, S.G.; Nayak, P.K.; Gjengedal, T. Coordinated power management and control of standalone PV-hybrid system with modified IWO-based MPPT. IEEE Syst. J. 2020, 15, 3585–3596. [Google Scholar] [CrossRef]
- Senapati, M.K.; Pradhan, C.; Samantaray, S.R.; Nayak, P.K. Improved power management control strategy for renewable energy-based DC micro-grid with energy storage integration. IET Gener. Transm. Distrib. 2019, 13, 838–849. [Google Scholar] [CrossRef]
- Senapati, M.K.; Al Zaabi, O.; Al Hosani, K.; Al Jaafari, K.; Pradhan, C.; Muduli, U.R. Advancing Electric Vehicle Charging Ecosystems With Intelligent Control of DC Microgrid Stability. IEEE Trans. Ind. Appl. 2024, 60, 7264–7278. [Google Scholar] [CrossRef]
- Subramanian, B.; Ismail, S. Production and use of HHO gas in IC engines. Int. J. Hydrogen Energy 2018, 43, 7140–7154. [Google Scholar] [CrossRef]
Property | Air Conditioner Condensate | Distilled Water |
---|---|---|
pH | 7.75 Neutral | 7.2 Neutral |
TDS | 22.4 ppm | 3 ppm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerwash, M.K.M.; Al-ghonemy, A.M.K.; Omara, M.A.; Ahmed, I.L.M.; Saeed, A.; Abdelaziz, G.B. Sustainable Production of Green Oxy-Hydrogen from Vehicles’ Air Conditioning Drains to Enhance Engine Efficiency and Reduce Greenhouse Gas Emissions. Hydrogen 2024, 5, 958-975. https://doi.org/10.3390/hydrogen5040051
Gerwash MKM, Al-ghonemy AMK, Omara MA, Ahmed ILM, Saeed A, Abdelaziz GB. Sustainable Production of Green Oxy-Hydrogen from Vehicles’ Air Conditioning Drains to Enhance Engine Efficiency and Reduce Greenhouse Gas Emissions. Hydrogen. 2024; 5(4):958-975. https://doi.org/10.3390/hydrogen5040051
Chicago/Turabian StyleGerwash, Mohamed K. M., Amin M. K. Al-ghonemy, Mohamed A. Omara, Ibrahim L. M. Ahmed, Aly Saeed, and Gamal B. Abdelaziz. 2024. "Sustainable Production of Green Oxy-Hydrogen from Vehicles’ Air Conditioning Drains to Enhance Engine Efficiency and Reduce Greenhouse Gas Emissions" Hydrogen 5, no. 4: 958-975. https://doi.org/10.3390/hydrogen5040051
APA StyleGerwash, M. K. M., Al-ghonemy, A. M. K., Omara, M. A., Ahmed, I. L. M., Saeed, A., & Abdelaziz, G. B. (2024). Sustainable Production of Green Oxy-Hydrogen from Vehicles’ Air Conditioning Drains to Enhance Engine Efficiency and Reduce Greenhouse Gas Emissions. Hydrogen, 5(4), 958-975. https://doi.org/10.3390/hydrogen5040051