Biopolymer Matrices Based on Chitosan and Fibroin: A Review Focused on Methods for Studying Surface Properties
Abstract
:1. Introduction
2. Existing Directions and Methods of Obtaining Porous Biopolymer Matrix
3. Preparation Biomaterials from the Chitosan Solutions
4. Application Fibroin to the Preparation of Polymer Matrices
5. Application of a Mix of the Chitosan with Proteins to Regulate the Morphofunctional Properties of Polymer Matrix
6. Investigation of the Surface of Biopolymer Materials
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plank, J. Applications of Biopolymers and Other Biotechnological Products in Building Materials. Appl. Microbiol. Biotechnol. 2004, 66, 1–9. [Google Scholar] [CrossRef]
- Rehm, B.H. Bacterial Polymers: Biosynthesis, Modifications and Applications. Nat. Rev. Microbiol. 2010, 8, 578–592. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, M.; Kishimoto, S.; Nakamura, S.; Sato, Y.; Hattori, H. Polyelectrolyte Complexes of Natural Polymers and Their Biomedical Applications. Polymers 2019, 11, 672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samadian, H.; Maleki, H.; Allahyari, Z.; Jaymand, M. Natural Polymers-Based Light-Induced Hydrogels: Promising Biomaterials for Biomedical Applications. Coord. Chem. Rev. 2020, 420, 213432. [Google Scholar] [CrossRef]
- George, A.; Sanjay, M.R.; Srisuk, R.; Parameswaranpillai, J.; Siengchin, S. A Comprehensive Review on Chemical Properties and Applications of Biopolymers and Their Composites. Int. J. Biol. Macromol. 2020, 154, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Ambekar, R.S.; Kandasubramanian, B. Progress in the Advancement of Porous Biopolymer Scaffold: Tissue Engineering Application. Ind. Eng. Chem. Res. 2019, 58, 6163–6194. [Google Scholar] [CrossRef]
- Park, S.-B.; Lih, E.; Park, K.-S.; Joung, Y.K.; Han, D.K. Biopolymer-Based Functional Composites for Medical Applications. Prog. Polym. Sci. 2017, 68, 77–105. [Google Scholar] [CrossRef]
- Greenwood, H.L.; Singer, P.A.; Downey, G.P.; Martin, D.K.; Thorsteinsdottir, H.; Daar, A.S. Regenerative Medicine and the Developing World. PLoS Med. 2006, 3, e381. [Google Scholar] [CrossRef] [PubMed]
- Dieckmann, C.; Renner, R.; Milkova, L.; Simon, J.C. Regenerative Medicine in Dermatology: Biomaterials, Tissue Engineering, Stem Cells, Gene Transfer and Beyond. Exp. Dermatol. 2010, 19, 697–706. [Google Scholar] [CrossRef]
- Francesko, A.; Blandón, L.; Vázquez, M.; Petkova, P.; Morató, J.; Pfeifer, A.; Heinze, T.; Mendoza, E.; Tzanov, T. Enzymatic Functionalization of Cork Surface with Antimicrobial Hybrid Biopolymer/Silver Nanoparticles. Acs Appl. Mater. Interfaces 2015, 7, 9792–9799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, J.M.; Rodriguez, A.; Chang, D.T. Foreign Body Reaction to Biomaterials. In Seminars in Immunology; Elsevier: Amsterdam, The Netherlands, 2008; Volume 20, pp. 86–100. [Google Scholar]
- Baier, R.E.; Dutton, R.C. Initial Events in Interactions of Blood with a Foreign Surface. J. Biomed. Mater. Res. 1969, 3, 191–206. [Google Scholar] [CrossRef]
- Shen, M.; Horbett, T.A. The Effects of Surface Chemistry and Adsorbed Proteins on Monocyte/Macrophage Adhesion to Chemically Modified Polystyrene Surfaces. J. Biomed. Mater. Res. 2001, 57, 336–345. [Google Scholar] [CrossRef]
- Mrksich, M.; Whitesides, G.M. Using Self-Assembled Monolayers to Understand the Interactions of Man-Made Surfaces with Proteins and Cells. Annu. Rev. Biophys. Biomol. Struct. 1996, 25, 55–78. [Google Scholar] [CrossRef]
- Klimek, K.; Ginalska, G. Proteins and Peptides as Important Modifiers of the Polymer Scaffolds for Tissue Engineering Applications—A Review. Polymers 2020, 12, 844. [Google Scholar] [CrossRef] [Green Version]
- Chien, K.R. Regenerative Medicine and Human Models of Human Disease. Nature 2008, 453, 302–305. [Google Scholar] [CrossRef] [PubMed]
- Legonkova, O.A.; Sukhareva, L.A. Thousand and One Polymer from Biostable to Biodegradable. In M. Radio-Soft; RadioSoft: Moscow, Russia, 2004; p. 272. ISBN 5-93274-008-6. [Google Scholar]
- Metcalfe, A.D.; Ferguson, M.W. Tissue Engineering of Replacement Skin: The Crossroads of Biomaterials, Wound Healing, Embryonic Development, Stem Cells and Regeneration. J. R. Soc. Interface 2007, 4, 413–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikada, Y. Challenges in Tissue Engineering. J. R. Soc. Interface 2006, 3, 589–601. [Google Scholar] [CrossRef] [PubMed]
- LogithKumar, R.; KeshavNarayan, A.; Dhivya, S.; Chawla, A.; Saravanan, S.; Selvamurugan, N. A Review of Chitosan and Its Derivatives in Bone Tissue Engineering. Carbohydr. Polym. 2016, 151, 172–188. [Google Scholar] [CrossRef] [PubMed]
- Reza, E.-K.; Fateme, R.; Moghim, A.H.A.; Sima, S.; Behnam, T.; Maleki, A.; Hamid, M. Chitosan Hydrogel/Silk Fibroin/Mg (OH) 2 Nanobiocomposite as a Novel Scaffold with Antimicrobial Activity and Improved Mechanical Properties. Sci. Rep. Nat. Publ. Group 2021, 11, 1–13. [Google Scholar]
- Teimouri, A.; Ebrahimi, R.; Chermahini, A.N.; Emadi, R. Fabrication and Characterization of Silk Fibroin/Chitosan/Nano γ-Alumina Composite Scaffolds for Tissue Engineering Applications. RSC Adv. 2015, 5, 27558–27570. [Google Scholar] [CrossRef]
- Characterization of Silk Fibroin/Chitosan 3D Porous Scaffold and In Vitro Cytology. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0128658 (accessed on 2 February 2021).
- Pankongadisak, P.; Suwantong, O. Enhanced Properties of Injectable Chitosan-Based Thermogelling Hydrogels by Silk Fibroin and Longan Seed Extract for Bone Tissue Engineering. Int. J. Biol. Macromol. 2019, 138, 412–424. [Google Scholar] [CrossRef]
- Wu, Y.-Y.; Jiao, Y.-P.; Xiao, L.-L.; Li, M.-M.; Liu, H.-W.; Li, S.-H.; Liao, X.; Chen, Y.-T.; Li, J.-X.; Zhang, Y. Experimental Study on Effects of Adipose-Derived Stem Cell–Seeded Silk Fibroin Chitosan Film on Wound Healing of a Diabetic Rat Model. Ann. Plast. Surg. 2018, 80, 572–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panjapheree, K.; Kamonmattayakul, S.; Meesane, J. Biphasic Scaffolds of Silk Fibroin Film Affixed to Silk Fibroin/Chitosan Sponge Based on Surgical Design for Cartilage Defect in Osteoarthritis. Mater. Des. 2018, 141, 323–332. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kundu, S.C. Chondrogenic Differentiation of Rat MSCs on Porous Scaffolds of Silk Fibroin/Chitosan Blends. Biomaterials 2012, 33, 2848–2857. [Google Scholar] [CrossRef] [PubMed]
- Ligler, F.S.; Lingerfelt, B.M.; Price, R.P.; Schoen, P.E. Development of Uniform Chitosan Thin-Film Layers on Silicon Chips. Langmuir 2001, 17, 5082–5084. [Google Scholar] [CrossRef]
- Mironenko, A.; Modin, E.; Sergeev, A.; Voznesenskiy, S.; Bratskaya, S. Fabrication and Optical Properties of Chitosan/Ag Nanoparticles Thin Film Composites. Chem. Eng. J. 2014, 244, 457–463. [Google Scholar] [CrossRef]
- Li, Q.; Qi, N.; Peng, Y.; Zhang, Y.; Shi, L.; Zhang, X.; Lai, Y.; Wei, K.; Soo Kim, I.; Zhang, K.-Q. Sub-Micron Silk Fibroin Film with High Humidity Sensibility through Color Changing. RSC Adv. 2017, 7, 17889–17897. [Google Scholar] [CrossRef] [Green Version]
- Sazhnev, N.A.; Drozdova, M.G.; Rodionov, I.A.; Kil’deeva, N.R.; Balabanova, T.V.; Markvicheva, E.A.; Lozinsky, V.I. Preparation of Chitosan Cryostructurates with Controlled Porous Morphology and Their Use as 3D-Scaffolds for the Cultivation of Animal Cells. Appl. Biochem. Microbiol. 2018, 54, 459–467. [Google Scholar] [CrossRef]
- Kil’deeva, N.R.; Kasatkina, M.A.; Drozdova, M.G.; Demina, T.S.; Uspenskii, S.A.; Mikhailov, S.N.; Markvicheva, E.A. Biodegradablescaffolds Based on Chitosan: Preparation, Properties, and Use for the Cultivation of Animal Cells. Appl. Biochem. Microbiol. 2016, 52, 515–524. [Google Scholar] [CrossRef]
- Yu, P.; Guo, J.; Li, J.; Shi, X.; Wang, L.; Chen, W.; Mo, X. Repair of Skin Defects with Electrospun Collagen/Chitosan and Fibroin/Chitosan Compound Nanofiber Scaffolds Compared with Gauze Dressing. J. Biomater. Tissue Eng. 2017, 7, 386–392. [Google Scholar] [CrossRef]
- Cai, Z.; Mo, X.; Zhang, K.; Fan, L.; Yin, A.; He, C.; Wang, H. Fabrication of Chitosan/Silk Fibroin Composite Nanofibers for Wound-Dressing Applications. Int. J. Mol. Sci. 2010, 11, 3529–3539. [Google Scholar] [CrossRef]
- Aliramaji, S.; Zamanian, A.; Mozafari, M. Super-Paramagnetic Responsive Silk Fibroin/Chitosan/Magnetite Scaffolds with Tunable Pore Structures for Bone Tissue Engineering Applications. Mater. Sci. Eng. C 2017, 70, 736–744. [Google Scholar] [CrossRef] [PubMed]
- Qasim, S.B.; Zafar, M.S.; Najeeb, S.; Khurshid, Z.; Shah, A.H.; Husain, S.; Rehman, I.U. Electrospinning of Chitosan-Based Solutions for Tissue Engineering and Regenerative Medicine. Int. J. Mol. Sci. 2018, 19, 407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zafar, M.; Najeeb, S.; Khurshid, Z.; Vazirzadeh, M.; Zohaib, S.; Najeeb, B.; Sefat, F. Potential of Electrospun Nanofibers for Biomedical and Dental Applications. Materials 2016, 9, 73. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Sangi, L.; Kumar, N.; Kumar, B.; Khurshid, Z.; Zafar, M.S. Evaluating Antibacterial and Surface Mechanical Properties of Chitosan Modified Dental Resin Composites. Technol. Health Care 2020, 28, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, G.Y.H.; Fook, A.C.B.M.; Fideles, T.B.; Cavalcanti, M.E.R.R.M.; Fook, M.V.L. Biodegradable Chitosan Scaffolds: Effect of Genipin Crosslinking. Available online: https://www.scientific.net/MSF.805.116 (accessed on 2 February 2021).
- Kumari, R.; Dutta, P.K. Physicochemical and Biological Activity Study of Genipin-Crosslinked Chitosan Scaffolds Prepared by Using Supercritical Carbon Dioxide for Tissue Engineering Applications. Int. J. Biol. Macromol. 2010, 46, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Nikonorov, V.V.; Ivanov, R.V.; Kil’deeva, N.R.; Bulatnikova, L.N.; Lozinskii, V.I. Synthesis and Characteristics of Cryogels of Chitosan Crosslinked by Glutaric Aldehyde. Polym. Sci. Ser. A 2010, 52, 828–834. [Google Scholar] [CrossRef]
- Rodionov, I.A.; Grinberg, N.V.; Burova, T.V.; Grinberg, V.Y.; Shabatina, T.I.; Lozinsky, V.I. Cryostructuring of Polymer Systems. 44. Freeze-Dried and Then Chemically Cross-Linked Wide Porous Cryostructurates Based on Serum Albumin. e-Polymers 2017, 17, 263–274. [Google Scholar] [CrossRef]
- Stoppel, W.L.; Ghezzi, C.E.; McNamara, S.L.; Iii, L.D.B.; Kaplan, D.L. Clinical Applications of Naturally Derived Biopolymer-Based Scaffolds for Regenerative Medicine. Ann. Biomed. Eng. 2015, 43, 657–680. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, N.; Nguyen, Q.T.; Chen, A.C.; Kaplan, D.L.; Sah, R.L.; Kundu, S.C. Potential of 3-D Tissue Constructs Engineered from Bovine Chondrocytes/Silk Fibroin-Chitosan for in Vitro Cartilage Tissue Engineering. Biomaterials 2011, 32, 5773–5781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vepari, C.; Kaplan, D.L. Silk as a Biomaterial. Prog. Polym. Sci. 2007, 32, 991–1007. [Google Scholar] [CrossRef] [PubMed]
- Bini, E.; Knight, D.P.; Kaplan, D.L. Mapping Domain Structures in Silks from Insects and Spiders Related to Protein Assembly. J. Mol. Biol. 2004, 335, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Cunniff, P.M.; Fossey, S.A.; Auerbach, M.A.; Song, J.W.; Kaplan, D.L.; Adams, W.W.; Eby, R.K.; Mahoney, D.; Vezie, D.L. Mechanical and Thermal Properties of Dragline Silk from the Spider Nephila Clavipes. Polym. Adv. Technol. 1994, 5, 401–410. [Google Scholar] [CrossRef]
- Nazarov, R.; Jin, H.-J.; Kaplan, D.L. Porous 3-D Scaffolds from Regenerated Silk Fibroin. Biomacromolecules 2004, 5, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-X.; Ma, H.; Wang, J.-L.; Qu, W. Production of Chitosan Scaffolds by Lyophilization or Electrospinning: Which Is Better for Peripheral Nerve Regeneration? Neural Regen. Res. 2021, 16, 1093. [Google Scholar] [PubMed]
- Kim, H.J.; Kim, H.S.; Matsumoto, A.; Chin, I.-J.; Jin, H.-J.; Kaplan, D.L. Processing Windows for Forming Silk Fibroin Biomaterials into a 3D Porous Matrix. Aust. J. Chem. 2005, 58, 716–720. [Google Scholar] [CrossRef]
- Li, L.; Yang, H.; Li, X.; Yan, S.; Xu, A.; You, R.; Zhang, Q. Natural Silk Nanofibrils as Reinforcements for the Preparation of Chitosan-Based Bionanocomposites. Carbohydr. Polym. 2021, 253, 117214. [Google Scholar] [CrossRef] [PubMed]
- Nazeer, M.A.; Yilgor, E.; Yilgor, I. Electrospun Polycaprolactone/Silk Fibroin Nanofibrous Bioactive Scaffolds for Tissue Engineering Applications. Polymer 2019, 168, 86–94. [Google Scholar] [CrossRef]
- Wang, X.; Kim, H.J.; Xu, P.; Matsumoto, A.; Kaplan, D.L. Biomaterial Coatings by Stepwise Deposition of Silk Fibroin. Langmuir 2005, 21, 11335–11341. [Google Scholar] [CrossRef]
- She, Z.; Jin, C.; Huang, Z.; Zhang, B.; Feng, Q.; Xu, Y. Silk Fibroin/Chitosan Scaffold: Preparation, Characterization, and Culture with HepG2 Cell. J. Mater. Sci. Mater. Med. 2008, 19, 3545–3553. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Reagan, M.R.; Kaplan, D.L. Electrospun Silk Biomaterial Scaffolds for Regenerative Medicine. Adv. Drug Deliv. Rev. 2009, 61, 988–1006. [Google Scholar] [CrossRef] [Green Version]
- Tyona, M.D. A Theoritical Study on Spin Coating Technique. Adv. Mater. Res. 2013, 2, 195–208. [Google Scholar] [CrossRef] [Green Version]
- Norrman, K.; Ghanbari-Siahkali, A.; Larsen, N.B. 6 Studies of Spin-Coated Polymer Films. Annu. Rep. Sect. C Phys. Chem. 2005, 101, 174–201. [Google Scholar] [CrossRef]
- Figallo, E.; Flaibani, M.; Zavan, B.; Abatangelo, G.; Elvassore, N. Micropatterned Biopolymer 3D Scaffold for Static and Dynamic Culture of Human Fibroblasts. Biotechnol. Prog. 2007, 23, 210–216. [Google Scholar] [CrossRef]
- Shah, A.M.; Yu, M.; Nakamura, Z.; Ciciliano, J.; Ulman, M.; Kotz, K.; Stott, S.L.; Maheswaran, S.; Haber, D.A.; Toner, M. Biopolymer System for Cell Recovery from Microfluidic Cell Capture Devices. Anal. Chem. 2012, 84, 3682–3688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kargl, R.; Mohan, T.; Köstler, S.; Spirk, S.; Doliška, A.; Stana-Kleinschek, K.; Ribitsch, V. Functional Patterning of Biopolymer Thin Films Using Enzymes and Lithographic Methods. Adv. Funct. Mater. 2013, 23, 308–315. [Google Scholar] [CrossRef]
- Qiu, S.; Xu, X.; Zeng, L.; Wang, Z.; Chen, Y.; Zhang, C.; Li, C.; Hu, J.; Shi, T.; Mai, Y.; et al. Biopolymer Passivation for High-Performance Perovskite Solar Cells by Blade Coating. J. Energy Chem. 2021, 54, 45–52. [Google Scholar] [CrossRef]
- Sampaio, S.; Taddei, P.; Monti, P.; Buchert, J.; Freddi, G. Enzymatic Grafting of Chitosan onto Bombyx Mori Silk Fibroin: Kinetic and IR Vibrational Studies. J. Biotechnol. 2005, 116, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Srbová, J.; Slováková, M.; Křípalová, Z.; Žárská, M.; Špačková, M.; Stránská, D.; Bílková, Z. Covalent Biofunctionalization of Chitosan Nanofibers with Trypsin for High Enzyme Stability. React. Funct. Polym. 2016, 104, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Ravi Kumar, M.N.V. A Review of Chitin and Chitosan Applications. React. Funct. Polym. 2000, 46, 1–27. [Google Scholar] [CrossRef]
- Hsu, S.; Whu, S.W.; Tsai, C.-L.; Wu, Y.-H.; Chen, H.-W.; Hsieh, K.-H. Chitosan as Scaffold Materials: Effects of Molecular Weight and Degree of Deacetylation. J. Polym. Res. 2004, 11, 141–147. [Google Scholar] [CrossRef]
- Huang, M.; Khor, E.; Lim, L.-Y. Uptake and Cytotoxicity of Chitosan Molecules and Nanoparticles: Effects of Molecular Weight and Degree of Deacetylation. Pharm. Res. 2004, 21, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Minagawa, T.; Okamura, Y.; Shigemasa, Y.; Minami, S.; Okamoto, Y. Effects of Molecular Weight and Deacetylation Degree of Chitin/Chitosan on Wound Healing. Carbohydr. Polym. 2007, 67, 640–644. [Google Scholar] [CrossRef]
- Guibal, E. Interactions of Metal Ions with Chitosan-Based Sorbents: A Review. Sep. Purif. Technol. 2004, 38, 43–74. [Google Scholar] [CrossRef]
- Pinto, R.V.; Gomes, P.S.; Fernandes, M.H.; Costa, M.E.V.; Almeida, M.M. Glutaraldehyde-Crosslinking Chitosan Scaffolds Reinforced with Calcium Phosphate Spray-Dried Granules for Bone Tissue Applications. Mater. Sci. Eng. C 2020, 109, 110557. [Google Scholar] [CrossRef]
- Mikhailov, S.N.; Zakharova, A.N.; Drenichev, M.S.; Ershov, A.V.; Kasatkina, M.A.; Vladimirov, L.V.; Novikov, V.V.; Kildeeva, N.R. Crosslinking of Chitosan with Dialdehyde Derivatives of Nucleosides and Nucleotides. Mechanism and Comparison with Glutaraldehyde. Nucleosides Nucleotides Nucleic Acids 2016, 35, 114–129. [Google Scholar] [CrossRef]
- Kasatkina, M.A.; Budantseva, N.A.; Kil’deeva, N.R. Preparation of Biologically Active Film-Forming Materials Based on Polyphosphate-Modified Chitosan. Pharm. Chem. J. 2016, 50, 250–257. [Google Scholar] [CrossRef]
- Nettles, D.L.; Elder, S.H.; Gilbert, J.A. Potential Use of Chitosan as a Cell Scaffold Material for Cartilage Tissue Engineering. Tissue Eng. 2002, 8, 1009–1016. [Google Scholar] [CrossRef]
- Kildeeva, N.; Chalykh, A.; Belokon, M.; Petrova, T.; Matveev, V.; Svidchenko, E.; Surin, N.; Sazhnev, N. Influence of Genipin Crosslinking on the Properties of Chitosan-Based Films. Polymers 2020, 12, 1086. [Google Scholar] [CrossRef]
- Sung, H.-W.; Huang, R.-N.; Huang, L.L.H.; Tsai, C.-C. In Vitro Evaluation of Cytotoxicity of a Naturally Occurring Cross-Linking Reagent for Biological Tissue Fixation. J. Biomater. Sci. Polym. Ed. 1999, 10, 63–78. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, M.K.; Shen, H.; Tang, F.R.; Arfuso, F.; Rajesh, M.; Wang, L.; Kumar, A.P.; Bian, J.; Goh, B.C.; Bishayee, A.; et al. Potential Role of Genipin in Cancer Therapy. Pharmacol. Res. 2018, 133, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Muzzarelli, R.A.A.; El Mehtedi, M.; Bottegoni, C.; Gigante, A. Physical Properties Imparted by Genipin to Chitosan for Tissue Regeneration with Human Stem Cells: A Review. Int. J. Biol. Macromol. 2016, 93, 1366–1381. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Gan, H.; Meng, Z.; Gu, R.; Wu, Z.; Zhang, L.; Zhu, X.; Sun, W.; Li, J.; Zheng, Y.; et al. Effects of Genipin Cross-Linking of Chitosan Hydrogels on Cellular Adhesion and Viability. Colloids Surf. B Biointerfaces 2014, 117, 398–405. [Google Scholar] [CrossRef]
- McGrath, K.; Kaplan, D. Protein-Based Materials; Springer: Boston, MA, USA, 1997. [Google Scholar]
- Qi, Y.; Wang, H.; Wei, K.; Yang, Y.; Zheng, R.-Y.; Kim, I.S.; Zhang, K.-Q. A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures. Int. J. Mol. Sci. 2017, 18, 237. [Google Scholar] [CrossRef]
- Li, L.; Wang, X.; Li, D.; Qin, J.; Zhang, M.; Wang, K.; Zhao, J.; Zhang, L. LBL Deposition of Chitosan/Heparin Bilayers for Improving Biological Ability and Reducing Infection of Nanofibers. Int. J. Biol. Macromol. 2020, 154, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Minoura, N.; Aiba, S.-I.; Gotoh, Y.; Tsukada, M.; Imai, Y. Attachment and Growth of Cultured Fibroblast Cells on Silk Protein Matrices. J. Biomed. Mater. Res. 1995, 29, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Inouye, K.; Kurokawa, M.; Nishikawa, S.; Tsukada, M. Use of Bombyx Mori Silk Fibroin as a Substratum for Cultivation of Animal Cells. J. Biochem. Biophys. Methods 1998, 37, 159–164. [Google Scholar] [CrossRef]
- Sofia, S.; McCarthy, M.B.; Gronowicz, G.; Kaplan, D.L. Functionalized Silk-Based Biomaterials for Bone Formation. J. Biomed. Mater. Res. 2001, 54, 139–148. [Google Scholar] [CrossRef]
- Dal Pra, I.; Freddi, G.; Minic, J.; Chiarini, A.; Armato, U. De Novo Engineering of Reticular Connective Tissue in Vivo by Silk Fibroin Nonwoven Materials. Biomaterials 2005, 26, 1987–1999. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.-P.; Wang, Y.-J.; Ren, L.; Wu, G.; Caridade, S.G.; Fan, J.-B.; Wang, L.-Y.; Ji, P.-H.; Oliveira, J.M.; Oliveira, J.T.; et al. Genipin-Cross-Linked Collagen/Chitosan Biomimetic Scaffolds for Articular Cartilage Tissue Engineering Applications. J. Biomed. Mater. Res. Part A 2010, 95A, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Gao, C.; Mao, Z.; Zhou, J.; Shen, J.; Hu, X.; Han, C. Collagen/Chitosan Porous Scaffolds with Improved Biostability for Skin Tissue Engineering. Biomaterials 2003, 24, 4833–4841. [Google Scholar] [CrossRef]
- Chen, X.; Li, W.J.; Zhong, W.; Ge, C.J.; Wang, H.F.; Yu, T.Y. Studies on Chitosan-Fibroin Blend Membranes(Ⅱ)──The pH and Ion Sensitivities of Semi-IPN Membranes. Chem. Res. Chin. Univ. 1996, 6. Available online: https://en.cnki.com.cn/Article_en/CJFDTotal-GDXH606.032.htm (accessed on 2 February 2021).
- Grabska-Zielińska, S.; Sionkowska, A.; Reczyńska, K.; Pamuła, E. Physico-Chemical Characterization and Biological Tests of Collagen/Silk Fibroin/Chitosan Scaffolds Cross-Linked by Dialdehyde Starch. Polymers 2020, 12, 372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, J.; She, R.; Huang, W.; Dong, Z.; Mo, G.; Liu, B. A Silk Fibroin/Chitosan Scaffold in Combination with Bone Marrow-Derived Mesenchymal Stem Cells to Repair Cartilage Defects in the Rabbit Knee. J. Mater. Sci. Mater. Med. 2013, 8, 2037–2046. [Google Scholar] [CrossRef]
- Sionkowska, A.; Płanecka, A. Preparation and Characterization of Silk Fibroin/Chitosan Composite Sponges for Tissue Engineering. J. Mol. Liq. 2013, 178, 5–14. [Google Scholar] [CrossRef]
- Xiaoyun, Z.; Yueping, C.; Shilei, S.; Chi, Z.; Yinghong, Z.; Nan, Y.; Huasong, Z.; Canhong, X. Good Cell Compatibility and Permeability of Silk Fibroin/Chitosan Composite Scaffolds. Chin. J. Tissue Eng. Res. 2020, 24, 2544. [Google Scholar]
- Yang, X.; Wang, X.; Hong, H.; Elfawal, G.; Lin, S.; Wu, J.; Jiang, Y.; He, C.; Mo, X.; Kai, G.; et al. Galactosylated Chitosan-Modified Ethosomes Combined with Silk Fibroin Nanofibers Is Useful in Transcutaneous Immunization. J. Control. Release 2020, 327, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Ratner, B.D.; Hoffman, A.S.; Schoen, F.J.; Lemons, J.E. Biomaterials Science: An Introduction to Materials in Medicine; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Bhattacharjee, P.; Naskar, D.; Maiti, T.K.; Bhattacharya, D.; Kundu, S.C. Investigating the Potential of Combined Growth Factors Delivery, from Non-Mulberry Silk Fibroin Grafted Poly(ɛ-Caprolactone)/Hydroxyapatite Nanofibrous Scaffold, in Bone Tissue Engineering. Appl. Mater. Today 2016, 5, 52–67. [Google Scholar] [CrossRef]
- Hunter, A.; Archer, C.W.; Walker, P.S.; Blunn, G.W. Attachment and Proliferation of Osteoblasts and Fibroblasts on Biomaterials for Orthopaedic Use. Biomaterials 1995, 16, 287–295. [Google Scholar] [CrossRef]
- Lincks, J.; Boyan, B.D.; Blanchard, C.R.; Lohmann, C.H.; Liu, Y.; Cochran, D.L.; Dean, D.D.; Schwartz, Z. Response of MG63 Osteoblast-like Cells to Titanium and Titanium Alloy Is Dependent on Surface Roughness and Composition. Biomaterials 1998, 19, 2219–2232. [Google Scholar] [CrossRef]
- Hallab, N.J.; Bundy, K.J.; O’Connor, K.; Moses, R.L.; Jacobs, J.J. Evaluation of Metallic and Polymeric Biomaterial Surface Energy and Surface Roughness Characteristics for Directed Cell Adhesion. Tissue Eng. 2001, 7, 55–71. [Google Scholar] [CrossRef] [Green Version]
- Jalili, N.; Laxminarayana, K. A Review of Atomic Force Microscopy Imaging Systems: Application to Molecular Metrology and Biological Sciences. Mechatronics 2004, 14, 907–945. [Google Scholar] [CrossRef]
- Vasilenko, I.; Kil’deeva, N.; Metelin, V.; Metelin, V.; Sazhnev, N.; Zakharova, V.; Shikhina, N. The Potential of Laser Interferometry for a Non-Invasive Assessment of Biopolymer Film Structure and Biological Properties. In Clinical and Preclinical Optical Diagnostics II (2019); Paper 11076_66; Optical Society of America: Washington, DC, USA, 2019; p. 11076_66. [Google Scholar]
- Hariharan, P. Optical Interferometry, 2nd. Ed.; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Ignatyev, P.S.; Indukaev, K.V.; Osipov, P.A.; Sergeev, I.K. Laser Interference Microscopy for Nanobiotechnologies. Biomed. Eng. 2013, 1, 32–35. [Google Scholar] [CrossRef]
- Butola, A.; Ahmad, A.; Dubey, V.; Senthilkumaran, P.; Mehta, D.S. Spectrally Resolved Laser Interference Microscopy. Laser Phys. Lett. 2018, 15, 075602. [Google Scholar] [CrossRef]
- De Groot, P. Principles of Interference Microscopy for the Measurement of Surface Topography. Adv. Opt. Photonics 2015, 7, 1–65. [Google Scholar] [CrossRef]
- Vasilenko, I.; Metelin, V.; Balkanov, A.; Ignatiev, P. Modulation Interference Microscopy as a Promising Method for Assessing the Risk of Metastasis in Patients with Breast Cancer. In Clinical and Preclinical Optical Diagnostics II (2019); Paper 11073_75; Optical Society of America: Washington, DC, USA, 2019; p. 11073_75. [Google Scholar]
- Brazhe, A.R.; Brazhe, N.A.; Maksimov, G.V.; Ignatyev, P.S.; Rubin, A.B.; Mosekilde, E.; Sosnovtseva, O.V. Phase-Modulation Laser Interference Microscopy: An Advance in Cell Imaging and Dynamics Study. JBO 2008, 13, 034004. [Google Scholar] [CrossRef]
- Dunne, L.W.; Iyyanki, T.; Hubenak, J.; Mathur, A.B. Characterization of Dielectrophoresis-Aligned Nanofibrous Silk Fibroin–Chitosan Scaffold and Its Interactions with Endothelial Cells for Tissue Engineering Applications. Acta Biomater. 2014, 10, 3630–3640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asadpour, S.; Kargozar, S.; Moradi, L.; Ai, A.; Nosrati, H.; Ai, J. Natural Biomacromolecule Based Composite Scaffolds from Silk Fibroin, Gelatin and Chitosan toward Tissue Engineering Applications. Int. J. Biol. Macromol. 2020, 154, 1285–1294. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Huang, W.; Xiong, K.; Ruan, S.; Yuan, C.; Mo, G.; Tian, R.; Zhou, S.; She, R.; Ye, P.; et al. Osteochondral Repair Using Scaffolds with Gradient Pore Sizes Constructed with Silk Fibroin, Chitosan, and Nano-Hydroxyapatite. Int. J. Nanomed. 2019, 14, 2011–2027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrawal, P.; Pramanik, K. Enhanced Chondrogenic Differentiation of Human Mesenchymal Stem Cells in Silk Fibroin/Chitosan/Glycosaminoglycan Scaffolds under Dynamic Culture Condition. Differentiation 2019, 110, 36–48. [Google Scholar] [CrossRef]
- Bacílková, A. Adhezivita a Viskozita Větvených Oligoesterů; Univerzita Karlova: Praha, Czech Republic, 2010. [Google Scholar]
- Nogueira, G.M.; Swiston, A.J.; Beppu, M.M.; Rubner, M.F. Layer-by-Layer Deposited Chitosan/Silk Fibroin Thin Films with Anisotropic Nanofiber Alignment. Langmuir 2010, 26, 8953–8958. [Google Scholar] [CrossRef] [PubMed]
- Pontinha, A.D.R.; Jorge, S.M.A.; Paquim, A.-M.C.; Diculescu, V.C.; Oliveira-Brett, A.M. In Situ Evaluation of Anticancer Drug Methotrexate–DNA Interaction Using a DNA-Electrochemical Biosensor and AFM Characterization. Phys. Chem. Chem. Phys. 2011, 13, 5227–5234. [Google Scholar] [CrossRef] [PubMed]
- Jandt, K.D. Atomic Force Microscopy of Biomaterials Surfaces and Interfaces. Surf. Sci. 2001, 491, 303–332. [Google Scholar] [CrossRef]
Polymer Matrix Type, Reference | Composition of the Studied Sample | Surface Structure Research Method | Research Method Capabilities | Method Limitations |
---|---|---|---|---|
Aligned three-dimensional nanofibrous scaffolds [106] | silk fibroin-chitosan (eSFCS) (50:50) | atomic force microscopy (AFM) | Study of the three-dimensional geometry of the surface of the object under investigation with micro- and nanometer spatial resolution without special preparation and coloring. Study of morphofunctional features of individual cells. Characterization of the mechanical properties of the scaffold surface. | Risk of damage to the sample and distortion of the test result |
Pore scaffold [107] | silk fibroin/collagen (SF/C) and silk fibroin/chitosan (SF/CS) | scanning electron microscopy (SEM) | High resolution for surface imaging. Study of the peculiarities of the interaction of cells with the material and the effect of tissue reaction on the implant. Analysis of the structure and interfaces between cells and matrix. | Invasive method. The need for sample preparation (like gold plating) |
Scaffold with appropriate composition to mimic matrix of the damagedtissue with stem cells [108] | silk-fibroin (SF)/chitosan (CS)/(80:20) | fluorescence microscope | Used to assess the fluorescence intensity of stained cytoobjects. Allows monitoring the proliferative activity and migration of cells on the matrix surface in real-time. Obtaining quantitative data of aggregated statistical indicators for each type of cell and conclusions on the level of expression of cell markers. Descriptive statistics and comparison of levels for the expression of each cellular marker. | Invasive method. The need to prepare a sample by introducing a fluorescent label |
Scaffold with open pore structure with desired pore size and porosity [109] | optimal silk fibroin–chitosan blend ratio of 80:20 | confocal laser scanning microscopy | It differs from conventional fluorescence microscopy in non-invasiveness and improved resolution along the optical axis of the objective. It is used for morphological studies of the surface of cells and matrices, allowing one to obtain more informative data, presented immediately in digital form, which is suitable for quantitative and morphometric analysis. Possibility of studying immunocytochemical reactions with subsequent fluorescent detection of antibodies bound to the studied surfaces. | The need to prepare a sample by introducing a fluorescent label |
Nanofiber scaffolds and films [99] | silk-fibroin (SF)/chitosan (CS) (25:75) | laser interferometry | Unlike other methods, it is non-invasive. Allows one to register and visualize information about the structure and properties of the surface in real-time. Reliable measurement of the thickness and roughness parameters of optically transparent biological and biopolymer objects (0.05–1000 μm). High-speed study of the morphological and functional features of individual cells with high resolution, with the possibility of obtaining 2D and 3D models. | The requirement for the transparency of biopolymers and cytoobjects. |
Biodegradable scaffold that mimics the extracellular matrix (ECM) of host tissue [110] | silk fibroin/chitosan (SF/CS) (80:20) | water using tensiometer | Study of the behaviour of liquids, including water at the water/polymer material interface, to solve problems in the study of the surface properties of materials intended for contact with the environment of a living organism. Obtaining information on intermolecular forces and dynamics of interactions of macromolecular chains, hydrophobic and hydrophilic effect, adhesion on contact with a scaffold surface, sorption capacity of various low molecular weight substances, surface physicochemistry and surface phenomena for biopolymer matrix coatings of various types. Determination of the numerical value of the surface energy. Characterization of the surface physicochemistry and surface topography of biopolymer matrix coatings, the study of the effect of the polymer surface and its roughness on proliferation, differentiation and cell adhesion. | Certain requirements for the surface of the research object: the impossibility of studying large-pore objects. |
20-bilayer assemblies scaffold [111] | silk fibroin/collagen (SF/C) | ellipsometry | The possibility of simultaneous measurement of amplitude and phase characteristics makes it possible to accurately determine simultaneously the thicknesses of films and matrices and the optical constants of the material. High-precision determination of the roughness height and thickness (depth) (angstroms, nanometers, microns) and its dimensions in the interface plane. Characterization of the composition, conductivity and other properties of the material. | Difficulty in choosing the correct model of the reflecting system and interpreting the measurement results. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakharova, V.A.; Kildeeva, N.R. Biopolymer Matrices Based on Chitosan and Fibroin: A Review Focused on Methods for Studying Surface Properties. Polysaccharides 2021, 2, 154-167. https://doi.org/10.3390/polysaccharides2010011
Zakharova VA, Kildeeva NR. Biopolymer Matrices Based on Chitosan and Fibroin: A Review Focused on Methods for Studying Surface Properties. Polysaccharides. 2021; 2(1):154-167. https://doi.org/10.3390/polysaccharides2010011
Chicago/Turabian StyleZakharova, Vasilina A., and Nataliya R. Kildeeva. 2021. "Biopolymer Matrices Based on Chitosan and Fibroin: A Review Focused on Methods for Studying Surface Properties" Polysaccharides 2, no. 1: 154-167. https://doi.org/10.3390/polysaccharides2010011
APA StyleZakharova, V. A., & Kildeeva, N. R. (2021). Biopolymer Matrices Based on Chitosan and Fibroin: A Review Focused on Methods for Studying Surface Properties. Polysaccharides, 2(1), 154-167. https://doi.org/10.3390/polysaccharides2010011