The 863C>A and 1031T>C Single Nucleotide Polymorphisms (SNPs) in the Tumor Necrosis Factor Alpha (TNF-α) Promoter Gene May Not Be Putative Predictors of HBV Endemicity
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Design and Population
2.2. Sample Size Determination
2.3. Data Collection Tools and Procedures
2.4. Sample Collection
2.5. Serology and Viral Load Testing
2.6. DNA Isolation and PCR Amplification of the Human TNF-Alpha Gene
2.7. DNA Isolation and PCR Amplification of the HBV Polymerase Gene
2.8. DNA Purification and Sequencing of the Human TNF-Alpha and HBV Polymerase Genes
2.9. Determination of the TNF-α (863C/A and 1031T/C) and HBV Genotypes
2.10. Statistical Analysis
3. Results
3.1. Screening of Participants
3.2. Socio-Demographic Characteristics
3.3. Viral Load, Genotypes, Sub-Genotypes, and Recombinant Genotypes
3.4. The TNF-α-863C>A and TNF-α-1031T>C Single Nucleotide Substitutions
3.5. The TNF-α-863C>A and TNF-α-1031T>C Single Nucleotide Polymorphisms and the HBV Genotypes
4. Discussion
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CORs | crude odds ratios |
ESLD | end-stage liver disease |
HBcAb | hepatitis B core antibody |
HBeAb | hepatitis B pre-core antibody |
HBeAg | hepatitis B pre-core antigen |
HBsAb | hepatitis B surface antibody |
HBsAg | hepatitis B surface antigen |
HBV | hepatitis B virus |
HCC | hepatocellular carcinoma |
MHC | major histocompatibility |
NCBI | National Center for Biotechnology Information |
PCR | polymerase chain reaction |
RDT | rapid diagnostic test |
SNPs | single nucleotide polymorphisms |
TNF | tumor necrosis factor |
References
- Manjita, S.; Arttrika, R.; Jitendra, K.C.; Manish, K.T.; Smita, V.; Vinod, K.D.; Gopal, N.; Ashok, K.J. Role of Proinflammatory Cytokines (Interferon Gamma) and Anti Inflammatory Cytokine (Interleukin-10) Gene Polymorphisms in Chronic Hepatitis B Infection: An Indian Scenario. J. Interf. Cytokine Res. 2014, 34, 547–551. [Google Scholar]
- Xia, Q.; Zhou, L.; Liu, D.; Chen, Z.; Chen, F. Relationship between TNF-, alpha. Gene Promoter Polymorphisms and Outcomes of Hepatitis B Virus Infections: A Meta-Analysis. PLoS ONE 2011, 6, e19606. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, Y.; Hu, G.; Liu, X.; Huang, X. The relationship between tumour necrosis factor-a gene polymorphism and susceptibility and clearance of the persistent hepatitis B virus infection in a Chinese population: A meta-analysis. Clin. Microbiol. Infect. 2013, 20, 227–234. [Google Scholar] [CrossRef]
- Panigrahi, R.; Sarkar, N.; Biswas, A.; Pal, A.; Saha, D.; Singh, S.P.; Panigrahi, M.K.; Bandopadhyay, M.; Chakrabarti, S.; Chakravarty, R. Association of TNF-α Promoter Polymorphism with HBV Associated Disease Outcome Among HBV Infected Patients from Orissa, Southern Part of East India. J. Clin. Exp. Hepatol. 2014, 4, 202–208. [Google Scholar] [CrossRef]
- Azar, S.S.; Mansoori, M.; Attar, M.; Shahbazi, M. Tumor Necrosis Factor Alpha -308 G/A Single Nucleotide Polymorphism and Susceptibility to Hepatocellular Carcinoma Via Hepatitis B Infection. World J. Hepatol. 2016, 17, 3381–3384. [Google Scholar]
- Talaat, R.; Abdelkhalek, M.; El-Maadawy, E.; Abdel-Mageed, S.; El-Shenawy, S.; Osman, M. Association of TNF-Alpha Gene Polymorphisms and Susceptibility to Hepatitis B Virus Infection in Egyptians. Hum. Immunol. 2017, 78, 739–746. [Google Scholar] [CrossRef]
- Mathew, S.; Abdel-Hafiz, H.; Raza, A.; Fatima, K.; Qadri, I. Host nucleotide polymorphism in hepatitis B virus-associated hepatocellular carcinoma. World J. Hepatol. 2016, 8, 485–498. [Google Scholar] [CrossRef]
- Ma, L.; Chen, S.; Mao, X.; Lu, Y.; Zhang, X.; Lao, X.; Qin, X.; Li, S. The association between TNFR gene polymorphisms and the risk of hepatitis B virus-related liver diseases in Chinese population. Sci. Rep. 2018, 8, 9240. [Google Scholar] [CrossRef]
- Godkin, A.; Davenport, M.; Hill, A. Molecular analysis of HLA class II associations with hepatitis B virus clearance and vaccine nonresponsiveness. Hepatology 2005, 41, 1383–1390. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Chen, H.; Yue, W. Genetic association of tumor necrosis factor (TNF)-alpha polymorphisms with hepatitis B in Gansu Province. Chin. J. Clin. Gastroenterol. 2005, 17, 289–292. [Google Scholar]
- Shi, K.Q.; Cai, X.H.; Xiao, D.D.; Wu, S.J.; Peng, M.M.; Lin, X.F.; Liu, W.Y.; Fan, Y.C.; Chen, Y.P.; Zheng, M.H. Tumour necrosis factorα-857T allele reduces the risk of hepatitis B virus infection in an Asian population. J. Viral Hepat. 2012, 19, 66–72. [Google Scholar] [CrossRef]
- Wilson, A.; Symons, J.; McDowell, T. Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc. Natl. Acad. Sci. USA 1997, 94, 3195–3199. [Google Scholar] [CrossRef]
- Berchtold, S.; Manncke, B.; Klenk, J. Forced IFIT-2 expression represses LPS induced TNF-alpha expression at posttranscriptional levels. BMC Immunol. 2008, 9, 75. [Google Scholar] [CrossRef]
- Nakamura, I.; Nupp, J.; Cowlen, M. Pathogenesis of experimental neonatal woodchuck hepatitis virus infection: Chronicity as an outcome of infection is associated with a diminished acute hepatitis that istemporally deficient the expression of interferon gamma and tumornecrosis factor-alpha. Hepatology 2001, 33, 439–447. [Google Scholar] [CrossRef]
- Gusatti, C.d.S.; Costi, C.; Rubia, M.; Halon, L.; Grandi, T.; Ferrari, A.; Medeiros, R.; Dornelles, M.; Rodenbusch, R. Association between cytokine gene polymorphisms and outcome of hepatitis B virus infection in southern Brazil Association Between Cytokine Gene Polymorphisms and Outcome of Hepatitis B Virus Infection in. J. Med. Virol. 2016, 88, 1759–1766. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, H.; Yoon, J.; Kim, C.Y.; Park, M.H.; Kim, L.H.; Park, B.L.; Shin, H.D. Association of TNF-a promoter polymorphisms with the clearance of hepatitis B virus infection. Hum. Mol. Gen. 2003, 12, 2541–2546. [Google Scholar] [CrossRef]
- Fletcher, G.J.; Samuel, P.; Christdas, J.; Gnanamony, M.; Ismail, A.M.; Anantharam, R.; Eapen, C.E. Association of HLA and TNF polymorphisms with the outcome of HBV infection in the South Indian population. Genes Immun. 2011, 12, 552–558. [Google Scholar] [CrossRef]
- Zheng, M.; Qiu, L.; Xin, Y.; Pan, H.; Shi, K.; Chen, Y. Tumor necrosis factor-α-308A allele may have a protective effect for chronic hepatitis B virus infection in Mongoloid populations. Int. J. Infect. Dis. 2010, 14, e580–e585. [Google Scholar] [CrossRef]
- Xiao, Q.; Fu, B.; Chen, P.; Liu, Z.Z.; Wang, W.; Ye, Q. Three polymorphisms of tumor necrosis factor-alpha and hepatitis B virus related hepatocellular carcinoma. Medicine 2016, 50, e5609. [Google Scholar] [CrossRef]
- Shin, S.; Kim, N.; Kim, J.; Lee, J.; Kim, J.; Park, H.; Kim, M.; Rim, K.S.; Hwang, S.G. Association between hepatocellular carcinoma and tumor necrosis factor alpha polymorphisms in South Korea. World J. Gastroenterol. 2015, 21, 13064–13072. [Google Scholar] [CrossRef]
- Kafeero, H.M.; Ndagire, D.; Ocama, P.; Walusansa, A.; Sendagire, H. Tumor Necrosis Factor-α-863C/A and 1031T/C single nucleotide polymorphic sites (SNPs) may be putative markers of HBV disease prognosis among Caucasoids: Evidence from a systematic review with meta-analysis. Gene Rep. 2022, 26, 101486. [Google Scholar] [CrossRef]
- Yun, J.-H.; Choi, J.-W.; Lee, K.-J.; Shin, J.-S.; Baek, K.-H. The promoter −1031(T/C) polymorphism in tumor necrosis factor-alpha associated with polycystic ovary syndrome. Reprod. Biol. Endocrinol. 2011, 9, 131. [Google Scholar] [CrossRef]
- Abutorabi, R.; Baradaran, A.; Sadat Mostafavi, F.; Zarrin, Y.; Mardanian, F. Evaluation of tumor necrosis factor alpha polymorphism frequencies in endometriosis. Int. J. Fertil. Steril. 2015, 9, 329–337. [Google Scholar]
- Higuchi, T.; Seki, N.; Kamizono, S.; Yamada, A.; Kimura, A.; Kato, H.; Itoh, K. Polymorphism of the 5′-flanking region of the human tumor necrosis factor (TNF)-α gene in Japanese. Tissue Antigens 1998, 51, 605–612. [Google Scholar] [CrossRef]
- Soga, Y.; Nishimura, F.; Ohyama, H.; Maeda, H.; Takashiba, S.; Murayama, Y. Tumor necrosis factor-alpha gene (TNF-α) −1031/−863, −857 single-nucleotide polymorphisms (SNPs) are associated with severe adult periodontitis in Japanese. J. Clin. Periodontol. 2003, 30, 524–531. [Google Scholar] [CrossRef]
- Yang, Y.A.N.; Qiu, X.; Yu, H.; Zeng, X.; Bei, C. TNF-α-863 polymorphisms and the risk of hepatocellular carcinoma. Exp. Ther. Med. 2012, 3, 513–518. [Google Scholar] [CrossRef]
- Laddha, N.; Dwivedi, M.; Begum, R. Increased tumor necrosis factor (TNF)-α and its promoter polymorphisms correlate with disease progression and higher susceptibility towards vitiligo. PLoS ONE 2012, 7, 52298. [Google Scholar] [CrossRef]
- Skoog, T.; Van’t Hooft, F.; Kallin, B.; Jovinge, S.; Boquist, S.; Nilsson, J.; Eriksson, P.; Hamsten, A. A common functional polymorphism (C→a substitution at position −863) in the promoter region of the tumour necrosis factor-α (TNF-α) gene associated with reduced circulating levels of TNF-α. Hum. Mol. Genet. 1999, 8, 1443–1449. [Google Scholar] [CrossRef]
- World Health Organization. World Health Statistics 2016: Monitoring Health for the SDGs Sustainable Development Goals; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- UPHIA. Uganda Population HIV Impact Assesment, August, 2019; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Cochran, W.G. Sampling Techniques, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1977. [Google Scholar]
- Eun Pyo Hong, J.W.P. Sample Size and Statistical Power Calculation in Genetic Association Studies. Genom. Inform. 2012, 10, 117–122. [Google Scholar] [CrossRef]
- Chevaliez, S.; Bouvier-Alias, M.; Laperche, S.; Hézode, C.; Pawlotsky, J.M. Performance of version 2.0 of the Cobas AmpliPrep/Cobas TaqMan real-time PCR assay for hepatitis B virus DNA quantification. J. Clin. Microbiol. 2010, 48, 3641–3647. [Google Scholar] [CrossRef]
- Ministry of Health. Uganda Guidelines for Prevention, Testing, Care and Treatment of Hepatitis B and C Virus Infection; Ministry of Health, Republic of Uganda: Kampala, Uganda, 2019; pp. 1–60. [Google Scholar]
- World Health Organization. Guidelines on Hepatitis B and C Virus Testing. Feburary 2017; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Kafeero, H.M.; Ndagire, D.; Ocama, P.; Kato, C.D.; Wampande, E.; Kajumbula, H.; Kateete, D.; Walusansa, A.; Kudamba, A.; Edgar, K.; et al. Disproportionate Distribution of HBV Genotypes A and D and the Recombinant Genotype D/E in the High and Low HBV Endemic Regions of Uganda: A Wake-Up Call for Regional Specific HBV Management. Int. J. Hepatol. 2022, 2022, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ga, N.; Fontana, R.; Gioffreda, D.; Valvano, R.; Iacobellis, A.; Facciorusso, D.; Niro, G.A.; Fontana, R.; Gioffreda, D.; Rosa, M.; et al. Tumor necrosis factor gene polymorphisms and clearance or progression of hepatitis B virus infection. Liver Int. 2005, 25, 1175–1181. [Google Scholar]
- Chen, J.; Yin, J.; Tan, X.; Zhang, H.; Zhang, H.; Chen, B. Improved multiplex-PCR to identify hepatitis B virus genotypes A-F and subgenotypes B1, B2, C1 and C2. J. Clin. Virol. 2007, 38, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Chavan, Y.G.; Pawar, S.R.; Wani, M.; Raut, A.D.; Misra, R.N.; Biotechnology, D.Y.P.; Vidyapeeth, P.D.Y.P. Hepatitis B virus DNA polymerase gene polymorphism based prediction of genotypes in chronic HBV patients from Western India. Afr. Health Sci. 2017, 17, 762–772. [Google Scholar] [CrossRef] [PubMed]
- Kao, P.; Wu, J.; Ni, Y.; Lin, Y.; Chen, H.; Hsu, S.H.; Hsu, H. Tumour necrosis factor- a promoter region polymorphisms affect the course of spontaneous HBsAg clearance. Liver Int. 2010, 30, 1448–1453. [Google Scholar] [CrossRef] [PubMed]
- Masatoshi, N.; Roychoudhury, A. Genic Variation within and between the Three Major Races of Man, Caucasoids, Negroids, and Mongoloids. Am. J. Hum. Genet. 1974, 26, 421–443. [Google Scholar]
- Chen, X.; Zhang, L.; Chang, Y.; Shen, T.; Wang, L.; Zhuang, H.; Lu, F. Association of TNF-α genetic polymorphisms with hepatocellular carcinoma susceptibility: A case-control study in a Han Chinese population. Int. J. Biol. Markers 2011, 26, 181–187. [Google Scholar] [CrossRef]
- Kummee, P.; Tangkijvanich, P.; Poovorawan, Y.; Hirankarn, N. Association of HLA-DRB1 * 13 and TNF- a gene polymorphisms with clearance of chronic hepatitis B infection and risk of hepatocellular carcinoma in Thai population. J. Viral Hepat. 2007, 14, 841–848. [Google Scholar] [CrossRef]
- Kew, M.C.; Kramvis, A.; Yu, M.C.; Arakawa, K.; Hodkinson, J. Increased Hepatocarcinogenic Potential of Hepatitis B Virus Genotype A in Bantu-Speaking Sub-Saharan Africans. J. Med. Virol. 2005, 521, 513–521. [Google Scholar] [CrossRef]
- Mahgoub, S.; Candotti, D.; El Ekiaby, M.; Allain, J. Hepatitis B Virus (HBV) Infection and Recombination between HBV Genotypes D and E in Asymptomatic Blood Donors from Khartoum, Sudan. J. Clin. Microbiol. 2011, 49, 298–306. [Google Scholar] [CrossRef]
- Kafeero, H.M.; Ndagire, D.; Ocama, P.; Kato, C.D.; Wampande, E.; Walusansa, A.; Kajumbula, H.; Kateete, D.; Sendagire, H. Hepatitis B virus (HBV) serological patterns among the HBsAg negative hospital attendees screened for immunization. Sci. Rep. 2022, 12, 7425. [Google Scholar] [CrossRef] [PubMed]
- Brechot, C.; Naupas, B.; Couronce, A.M. Evidence that Hepatitis B Has a Role in Liver-Cell Carcinoma in Alcoholic Liver Disease. N. Engl. J. Med. 1982, 306, 1384–1387. [Google Scholar] [CrossRef] [PubMed]
- Kafeero, H.M.; Ndagire, D.; Ocama, P.; Kudamba, A.; Walusansa, A.; Sendagire, H. Prevalence and predictors of hepatitis B virus (HBV) infection in east Africa: Evidence from a systematic review and meta-analysis of epidemiological studies published from 2005 to 2020. Arch. Public Health 2021, 79, 167. [Google Scholar] [CrossRef] [PubMed]
- Bwogi, J.; Braka, F.; Makumbi, I.; Mishra, V.; Bakamutumaho, B.; Nanyunja, M.; Opio, A.; Downing, R.; Biryahwaho, B.; Lewis, R.F. Hepatitis B infection is highly endemic in Uganda: Findings from a national serosurvey. Afr. Health Sci. 2009, 9, 98–108. [Google Scholar]
- Halfon, P.; Bourlière, M.; Pol, S.; Benhamou, Y.; Ouzan, D.; Rotily, M. Multicentre study of hepatitis B virus genotypes in France: Correlation with liver fibrosis and hepatitis B e antigen status. J. Viral Hepat. 2006, 13, 329–335. [Google Scholar] [CrossRef]
- Koedijk, F.; van Houdt, R.; Op de Coul, E.; Dukers, N.; Niesters, H.; Mostert, M.; Al, E. Hepatitis B virus transmission patterns in the Netherlands, 2004. Ned Tijdschr Geneeskd 2008, 152, 2673–2680. [Google Scholar]
- Sanchez-Tapias, J.; Costa, J.; Mas, A.; Bruguera, M.; Rodes, J. Influence of hepatitis B virus genome on the long-term outcome of chronic hepatitis B virus in western patients. Gastroenterology 2002, 123, 1848–1856. [Google Scholar] [CrossRef]
- Erhardt, A.; Blondin, D.; Hauck, K.; Sagir, A.; Kohnle, T.; Heintges, T. Response to interferon alfa is hepatitis B virus genotype dependent: Genotype A is more sensitive to interferon than genotype D. Gut 2005, 54, 1009–1013. [Google Scholar] [CrossRef]
- Wai, C.; Chu, C.; Hussain, M. HBV genotype B is associated with better response to interferon therapy in HBeAg (+) chronic hepatitis than genotype C. Hepatol. Hepatol. 2002, 36, 1425–1430. [Google Scholar]
- Yousif, M.; Mudawi, H.; Bakhiet, S. Molecular characterization of hepatitis B virus in liver disease patients and asymptomatic carriers of the virus in Sudan. BMC Infect. Dis. 2013, 13, 328. [Google Scholar] [CrossRef]
Variable | Status | Low Endemic | High Endemic | ||
---|---|---|---|---|---|
Number | Percentage | Number | Percentage | ||
HBsAg | Negative | 30 | 50.8% | 26 | 45.6% |
Positive | 29 | 49.2% | 31 | 54.4% | |
Sex | Female | 29 | 49.2% | 28 | 49.1% |
Male | 30 | 50.8% | 29 | 50.9% | |
Age category | Elderly ≥ 60 | 4 | 6.8% | 3 | 5.3% |
Middle aged (31–59) | 29 | 49.2% | 32 | 56.1% | |
Young adults (18–30) | 26 | 44.1% | 22 | 38.6% | |
Marital status | Divorced | 5 | 8.5% | 6 | 10.5% |
Married | 36 | 61.0% | 35 | 61.4% | |
Single | 18 | 28.8% | 16 | 28.1% | |
Education level | Post-Secondary | 12 | 20.3% | 9 | 15.8% |
Primary | 23 | 39.0% | 27 | 47.4% | |
Secondary | 17 | 28.8% | 16 | 28.1% | |
Unknown | 7 | 11.9% | 5 | 8.8% | |
Total | 59 | 100.0% | 57 | 100.0% |
Variable | Low Endemic, n (%) | High Endemic, n (%) | OR (95% CI) | p Value |
---|---|---|---|---|
HBV genotype | ||||
A | 10 (34.5%) | 7 (22.6%) | 1.00 (Reference) | |
D | 5 (17.2%) | 11(35.5%) | 1.54 (0.3678 to 6.4478) | 0.5545 |
Sub-genotype | ||||
A1 | 12 (41.4%) | 1 (3.2) | 1.00 (Reference) | |
D4 | 0 (0.0%) | 1 (3.2%) | 25.0 (0.6688 to 934.5048) | 0.0815 |
Mixed genotype | ||||
D/E | 2 (6.9%) | 11 (5.53%) | 0.26 (0.04338 to 1.5552) | 0.1398 |
Viral load (IU/mL) | ||||
<20,000 | 17 (58.6%) | 23 (74.2%) | 1.00 (Reference) | |
≥20,000 | 12 (41.4%) | 8 (25.8%) | 4.07 (1.3661 to 12.1431) | 0.0117 * |
Low Endemic | HBsAg+, n (%) | HBsAg−, n (%) | OR (95%CI) | p Value |
---|---|---|---|---|
TNF-α-863C/A | ||||
Genotypes | ||||
C>A | 1 (3.45) | 1 (3.3) | 1.00 (reference) | |
CC | 28 (96.5) | 29 (96.7) | 1.0357 (0.06173 to 17.3775) | 0.9805 |
Allele | ||||
A | 2 (3.45) | 2 (3.3) | 1.00 (reference) | |
C | 56 (96.5) | 58 (96.7) | 1.0357 (0.141 to 7.6079) | 0.9725 |
TNF-α-1031T/C | ||||
T>C | 2 (6.9) | 1 (3.3) | 1.00 (reference) | |
TT | 27 (93.1) | 29 (96.7) | 2.1481 (0.1841 to 25.0699) | 0.5419 |
Allele | ||||
C | 4 (6.9) | 2 (3.3) | 1.00 (reference) | |
T | 54 (93.1) | 58 (96.7) | 2.1481 (0.378 to 12.207) | 0.3884 |
Low endemic | ||||
TNF-α-863C/A | ||||
Genotypes | ||||
C>A | 1 (3.23) | 2 (7.7) | 1.00 (reference) | |
CC | 30 (9.68) | 24 (92.3) | 0.400 (0.03418 to 4.6809) | 0.4653 |
Allele | ||||
A | 2 (3.23) | 4 (7.7) | 1.00 (reference) | |
C | 60 (9.68) | 48 (92.3) | 0.400 (0.07026 to 2.2774) | 0.3018 |
TNF-α-1031T/C | ||||
Genotypes | ||||
T>C | 2 (6.45) | 3 (11.1) | 1.00 (reference) | |
TT | 29 (9.35) | 24 (88.9) | 0.55 (0.0851 to 3.5768) | 0.5329 |
Allele | ||||
C | 4 (6.45) | 6 (11.1) | 1.00 (reference) | |
T | 58 (93.5) | 48 (88.9) | 0.57 (0.1523 to 2.1447) | 0.4069 |
SNP | Endemicity | Allele | Allele Frequency, n (%) | 95%CI | p Value |
---|---|---|---|---|---|
TNF-α-863C/A | Low | C | 114 (96.6) | ||
A | 4 (3.4) | 43.99% to 97.09% | <0.0001 * | ||
High | C | 109 (95.6) | |||
A | 5 (4.4) | 47.04% to 96.08% | <0.0001 * | ||
TNF-α-1031T/C | Low | T | 112 (94.9) | ||
C | 6 (5.1) | 49.59% to 95.3% | <0.0001 * | ||
High | T | 105 (92.1) | |||
C | 9 (7.9) | 51.5% to 91.99% | <0.0001 * | ||
Genotype | Genotype frequency, n (%) | ||||
TNF-α-863C/A | Low | CC | 57 (96.6) | ||
C>A | 2 (3.4) | 28.03% to 97.36% | <0.0001 * | ||
High | CC | 54 (94.7) | |||
C>A | 2 (3.5) | 25.91% to 96.12% | <0.0001 * | ||
TNF-α-1031T/C | Low | TT | 56 (94.9) | ||
T>C | 3 (5.1) | 33.71% to 95.77% | <0.0001 * | ||
High | TT | 52 (92.9) | |||
T>C | 4 (7.1) | 36.05% to 93.77 | <0.0001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kafeero, H.M.; Ndagire, D.; Ocama, P.; Kato, C.D.; Kateete, D.P.; Walusansa, A.; Kudamba, A.; Edgar, K.; Katabazi, F.A.; Namaganda, M.M.; et al. The 863C>A and 1031T>C Single Nucleotide Polymorphisms (SNPs) in the Tumor Necrosis Factor Alpha (TNF-α) Promoter Gene May Not Be Putative Predictors of HBV Endemicity. Livers 2023, 3, 545-561. https://doi.org/10.3390/livers3040037
Kafeero HM, Ndagire D, Ocama P, Kato CD, Kateete DP, Walusansa A, Kudamba A, Edgar K, Katabazi FA, Namaganda MM, et al. The 863C>A and 1031T>C Single Nucleotide Polymorphisms (SNPs) in the Tumor Necrosis Factor Alpha (TNF-α) Promoter Gene May Not Be Putative Predictors of HBV Endemicity. Livers. 2023; 3(4):545-561. https://doi.org/10.3390/livers3040037
Chicago/Turabian StyleKafeero, Hussein Mukasa, Dorothy Ndagire, Ponsiano Ocama, Charles Drago Kato, David Patrick Kateete, Abdul Walusansa, Ali Kudamba, Kigozi Edgar, Fred Ashaba Katabazi, Maria Magdalene Namaganda, and et al. 2023. "The 863C>A and 1031T>C Single Nucleotide Polymorphisms (SNPs) in the Tumor Necrosis Factor Alpha (TNF-α) Promoter Gene May Not Be Putative Predictors of HBV Endemicity" Livers 3, no. 4: 545-561. https://doi.org/10.3390/livers3040037
APA StyleKafeero, H. M., Ndagire, D., Ocama, P., Kato, C. D., Kateete, D. P., Walusansa, A., Kudamba, A., Edgar, K., Katabazi, F. A., Namaganda, M. M., Ssenku, J. E., Wampande, E., Kajumbula, H., & Sendagire, H. (2023). The 863C>A and 1031T>C Single Nucleotide Polymorphisms (SNPs) in the Tumor Necrosis Factor Alpha (TNF-α) Promoter Gene May Not Be Putative Predictors of HBV Endemicity. Livers, 3(4), 545-561. https://doi.org/10.3390/livers3040037