Phosphatidylcholine in Intestinal Mucus Protects against Mucosal Invasion of Microbiota and Consequent Inflammation
Abstract
:1. Introduction
2. Phosphatidylcholine as a Key Component of the Mucus Barrier
3. Low Mucus Phosphatidylcholine as Feature of Ulcerative Colitis
4. The Microbiota as a Game Changer
5. Helicobacter pylori as an Example of Phosphatidylcholine-Consuming Bacteria
6. Topical Substitution of Phosphatidylcholine in Distal Ileum as Treatment for Ulcerative Colitis
7. Would Phosphatidylcholine Also Be Effective in Other Intestinal Inflammatory Conditions?
8. Further Experimental Evidence from Genetic Mouse Models
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IBD | inflammatory bowel disease(s) |
LPFF | lipoprotein-free fraction |
PC | phosphatidylcholine |
NSAID(s) | non-steroidal anti-inflammatory drug(s) |
PL | phospholipase |
PSC | primary sclerosing cholangitis |
TER | transepithelial resistance |
TJ | tight junction(s) |
References
- Stremmel, W.; Staffer, S.; Weiskirchen, R. Phosphatidylcholine passes by paracellular transport to the apical side of the polarized biliary tumor cell line MZ-CHA-1. Int. J. Mol. Sci. 2019, 20, 4034. [Google Scholar] [CrossRef] [PubMed]
- Stremmel, W.; Lukasova, M.; Weiskirchen, R. The neglected biliary mucus and its phosphatidylcholine content: A putative player in pathogenesis of primary cholangitis—A narrative review article. Ann. Transl. Med. 2021, 9, 738. [Google Scholar] [CrossRef]
- Lukasowa, M.; Weinberger, K.; Weiskirchen, R.; Stremmel, W. Oninon skin type of perductular sclerosis in mice with genetic deletion of biliary kindlin-2 as tight junction protein: A pilot experiment indicating a primary sclerosing cholangitis (PSC) phenotype. Metab. Target. Organ. Damage 2024, submitted.
- Titball, R.W. Bacterial phospholipases C. Microbiol. Rev. 1993, 57, 347–366. [Google Scholar] [CrossRef] [PubMed]
- Titball, R.W. Bacterial phospholipases. Symp. Ser. Soc. Appl. Microbiol. 1998, 27, 127S–137S. [Google Scholar] [PubMed]
- Mauch, F.; Bode, G.; Ditschuneit, H.; Malfertheiner, P. Demonstration of a phospholipid-rich zone in the human gastric epithelium damaged by Helicobacter pylori. Gastroenterology 1993, 105, 1698–1704. [Google Scholar] [CrossRef] [PubMed]
- Schmiel, D.H.; Miller, V.L. Bacterial phospholipases and pathogenesis. Microbes Infect. 1999, 1, 1103–1112. [Google Scholar] [CrossRef]
- El-Sayed, M.Y.; DeBose, C.D.; Coury, L.A.; Roberts, M.F. Sensitivity of phospholipase C (Bacillus cereus) activity to phosphatidylcholine structural modifications. Biochim. Biophys. Acta 1985, 837, 325–335. [Google Scholar] [CrossRef]
- Slomiany, B.L.; Slomiany, A. Mechanism of Helicobacter pylori pathogenesis: Focus on mucus. J. Clin. Gastroenterol. 1992, 14 (Suppl. S1), S114–S121. [Google Scholar] [CrossRef] [PubMed]
- Schilke, R.M.; Blackburn, C.M.R.; Bamgbose, T.T.; Woolard, M.D. Interface of phospholipase activity, immune cell function, and atherosclerosis. Biomolecules 2020, 10, 1449. [Google Scholar] [CrossRef]
- Chitim, C. Characterization of gut bacterial phospholipase involved in disease associated metabolism. Available online: https://dash.harvard.edu/handle/1/42013128 (accessed on 29 August 2024).
- DeSchryver-Kecskemeti, K.; Eliakim, R.; Carroll, S.; Stenson, W.F.; Moxley, M.A.; Alpers, D.H. Intestinal surfactant-like material. A novel secretory product of the rat enterocyte. J. Clin. Investig. 1989, 84, 1355–1361. [Google Scholar] [CrossRef]
- Ehehalt, R.; Wagenblast, J.; Erben, G.; Lehmann, W.-D.; Hinz, U.; Merle, U.; Stremmel, W. Phosphatidylcholine and lysophosphatidylcholine in intestinal mucus of ulcerative colitis patients. A quantitative approach by nanoelectrospray-tandem mass spectrometry. Scand. J. Gastroenterol. 2004, 39, 737–742. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, M.; Kotecha, S. Pulmonary surfactant in newborn infants and children. Breathe 2013, 9, 476–488. [Google Scholar] [CrossRef]
- Hills, B.A. Water repellency induced by pulmonary surfactants. J. Physiol. 1982, 325, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.E.V.; Gustafsson, J.K.; Holmén-Larsson, J.; Jabbar, K.S.; Xia, L.; Xu, H.; Ghishan, F.K.; Carvalho, F.A.; Gewirtz, A.T.; Sjövall, H.; et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut 2013, 63, 281–291. [Google Scholar] [CrossRef]
- Butler, B.D.; Lichtenberger, L.M.; Hills, B.A. Distribution of surfactants in the canine gastrointestinal tract and their ability to lubricate. AJP Gastrointest. Liver Physiol. 1983, 244, G645–G651. [Google Scholar] [CrossRef]
- Lichtenberger, L.M.; Romero, J.J.; Dial, E.J. Surface phospholipids in gastric injury and protection when a selective cyclooxygenase-2 inhibitor (Coxib) is used in combination with aspirin. Br. J. Pharmacol. 2007, 150, 913–919. [Google Scholar] [CrossRef]
- Burke, J.E.; Dennis, E.A. Phospholipase A2 structure/function, mechanism, and signaling. J. Lipid Res. 2009, 50, S237–S242. [Google Scholar] [CrossRef]
- Koebnik, R.; Locher, K.P.; Van Gelder, P. Structure and function of bacterial outer membrane proteins: Barrels in a nutshell. Mol. Microbiol. 2000, 37, 239–253. [Google Scholar] [CrossRef]
- Snijder, H.J.; Dijkstra, B.W. Bacterial phospholipase A: Structure and function of an integral membrane phospholipase. Biochim. Biophys. Acta 2000, 1488, 91–101. [Google Scholar] [CrossRef]
- Johansson, M.E.V.; Hansson, G.C. Immunological aspects of intestinal mucus and mucins. Nat. Rev. Immunol. 2016, 16, 639–649. [Google Scholar] [CrossRef]
- Stremmel, W.; Staffer, S.; Stuhrmann, N.; Gan-Schreier, H.; Gauss, A.; Burger, N.; Hornuss, D. Phospholipase A2 of microbiota as pathogenetic determinant to induce inflammatory states in ulcerative colitis: Therapeutic implications of phospholipase A2 inhibitors. Inflamm. Intest. Dis. 2017, 2, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Lichtenberger, L.M. The hydrophobic barrier properties of gastrointestinal mucus. Ann. Rev. Physiol. 1995, 57, 565–583. [Google Scholar] [CrossRef] [PubMed]
- Dietl, P.; Haller, T. Exocytosis of lung surfactant: From the secretory vesicle to the Air-Liquid interface. Ann. Rev. Physiol. 2005, 67, 595–621. [Google Scholar] [CrossRef]
- Stremmel, W.; Staffer, S.; Gan-Schreier, H.; Wannhoff, A.; Bach, M.; Gauss, A. Phosphatidylcholine passes through lateral tight junctions for paracellular transport to the apical side of the polarized intestinal tumor cell-line CaCO2. Biochim. Biophys. Acta 2016, 1861, 1161–1169. [Google Scholar] [CrossRef]
- Stremmel, W.; Staffer, S.; Schneider, M.J.; Gan-Schreier, H.; Wannhoff, A.; Stuhrmann, N.; Gauss, A.; Wolburg, H.; Mahringer, A.; Swidsinski, A.; et al. Genetic mouse models with intestinal-specific tight junction deletion resemble an ulcerative colitis phenotype. J. Crohn’s Colitis 2017, 11, 1247–1257. [Google Scholar] [CrossRef] [PubMed]
- Braun, A.; Schönfeld, U.; Welsch, T.; Kadmon, M.; Funke, B.; Gotthardt, D.; Zahn, A.; Autschbach, F.; Kienle, P.; Zharnikov, M.; et al. Reduced hydrophobicity of the colonic mucosal surface in ulcerative colitis as a hint at a physicochemical barrier defect. Int. J. Color. Dis. 2011, 26, 989–998. [Google Scholar] [CrossRef]
- Ehehalt, R.; Jochims, C.; Lehmann, W.-D.; Erben, G.; Staffer, S.; Reininger, C.; Stremmel, W. Evidence of luminal phosphatidylcholine secretion in rat ileum. Biochim. Biophys. Acta 2004, 1682, 63–71. [Google Scholar] [CrossRef]
- Dashti, M.; Kulik, W.; Hoek, F.; Veerman, E.C.; Peppelenbosch, M.P.; Rezaee, F. A phospholipidomic analysis of all defined human plasma lipoproteins. Sci. Rep. 2011, 1, 139. [Google Scholar] [CrossRef]
- Meves, A.; Stremmel, C.; Gottschalk, K.; Fässler, R. The Kindlin protein family: New members to the club of focal adhesion proteins. Trends Cell Biol. 2009, 19, 504–513. [Google Scholar] [CrossRef]
- Rognoni, E.; Widmaier, M.; Jakobson, M.; Ruppert, R.; Ussar, S.; Katsougkri, D.; Böttcher, R.T.; Lai-Cheong, J.E.; Rifkin, D.B.; McGrath, J.A.; et al. Kindlin-1 controls Wnt and TGF-β availability to regulate cutaneous stem cell proliferation. Nat. Med. 2014, 20, 350–359. [Google Scholar] [CrossRef]
- Montanez, E.; Ussar, S.; Schifferer, M.; Bösl, M.; Zent, R.; Moser, M.; Fässler, R. Kindlin-2 controls bidirectional signaling of integrins. Genes. Dev. 2008, 22, 1325–1330. [Google Scholar] [CrossRef]
- Chanez-Paredes, S.D.; Abtahi, S.; Kuo, W.-T.; Turner, J.R. Differentiating between tight junction-dependent and tight junction-independent intestinal barrier loss in vivo. Methods Mol. Biol. 2021, 2367, 249–271, Erratum in Methods Mol. Biol. 2021, 2367, C1. [Google Scholar] [CrossRef] [PubMed]
- Swidsinski, A.; Loening-Baucke, V.; Theissig, F.; Engelhardt, H.; Bengmark, S.; Koch, S.; Lochs, H.; Dorffel, Y. Comparative study of the intestinal mucus barrier in normal and inflamed colon. Gut 2007, 56, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Stremmel, W.; Vural, H.; Evliyaoglu, O.; Weiskirchen, R. Delayed-release phosphatidylcholine is effective for treatment of ulcerative colitis: A Meta-Analysis. Dig. Dis. 2021, 39, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Hering, N.A.; Fromm, M.; Schulzke, J. Determinants of colonic barrier function in inflammatory bowel disease and potential therapeutics. J. Physiol. 2012, 590, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- John, L.J.; Fromm, M.; Schulzke, J.-D. Epithelial barriers in intestinal inflammation. Antioxid. Redox Signal. 2011, 15, 1255–1270. [Google Scholar] [CrossRef]
- Schulzke, J.D.; Ploeger, S.; Amasheh, M.; Fromm, A.; Zeissig, S.; Troeger, H.; Richter, J.; Bojarski, C.; Schumann, M.; Fromm, M. Epithelial tight junctions in intestinal inflammation. Ann. N. Y Acad. Sci. 2009, 1165, 294–300. [Google Scholar] [CrossRef]
- Muise, A.; Rotin, D. Apical junction complex proteins and ulcerative colitis: A focus on the PTPRS gene. Expert Rev. Mol. Diagn. 2008, 8, 465–477. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Q.; Zhang, M.; Wang, C.; Zhu, Z.; Li, N.; Li, J. Effect of n-3 polyunsaturated fatty acids on membrane microdomain localization of tight junction proteins in experimental colitis. FEBS J. 2007, 275, 411–420. [Google Scholar] [CrossRef]
- Oshima, T.; Miwa, H.; Joh, T. Changes in the expression of claudins in active ulcerative colitis. J. Gastroenterol. Hepatol. 2008, 23 (Suppl. S2), S146–S150. [Google Scholar] [CrossRef]
- Swidsinski, A.; Loening-Baucke, V.; Herber, A. Mucosal flora in Crohn’s disease and ulcerative colitis—An overview. J. Physiol. Pharmacol. 2009, 60 (Suppl. S6), 61–71. [Google Scholar] [PubMed]
- Festen, E.; Szperl, A.; Weersma, R.; Wijmenga, C.; Wapenaar, M. Inflammatory bowel disease and celiac disease: Overlaps in the pathology and genetics, and their potential drug targets. Endocr. Metab. Immune Disord.-Drug Targets 2009, 9, 199–218. [Google Scholar] [CrossRef] [PubMed]
- Wapenaar, M.C.; Monsuur, A.J.; Van Bodegraven, A.A.; Weersma, R.K.; Bevova, M.R.; Linskens, R.K.; Howdle, P.; Holmes, G.; Mulder, C.J.; Dijkstra, G.; et al. Associations with tight junction genes PARD3 and MAGI2 in Dutch patients point to a common barrier defect for coeliac disease and ulcerative colitis an unusual case of ascites. Gut 2007, 57, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Van Der Post, S.; Jabbar, K.S.; Birchenough, G.; Arike, L.; Akhtar, N.; Sjovall, H.; Johansson, M.E.V.; Hansson, G.C. Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut 2019, 68, 2142–2151. [Google Scholar] [CrossRef]
- Dorofeyev, A.E.; Vasilenko, I.V.; Rassokhina, O.A.; Kondratiuk, R.B. Mucosal barrier in ulcerative colitis and Crohn’s disease. Gastroenterol. Res. Pract. 2013, 2013, 431231. [Google Scholar] [CrossRef]
- Barton, J.G.; Paden, M.A.; Lane, M.; Postier, R.G. Comparison of postoperative outcomes in ulcerative colitis and familial polyposis patients after ileoanal pouch operations. Am. J. Surg. 2001, 182, 616–620. [Google Scholar] [CrossRef]
- Quinn, K.P.; Lightner, A.L.; Pendegraft, R.S.; Enders, F.T.; Boardman, L.A.; Raffals, L.E. Pouchitis is a common complication in patients with familial adenomatous polyposis following ileal Pouch–Anal anastomosis. Clin. Gastroenterol. Hepatol. 2016, 14, 1296–1301. [Google Scholar] [CrossRef]
- Amasheh, S.; Dullat, S.; Fromm, M.; Schulzke, J.D.; Buhr, H.J.; Kroesen, A.J. Inflamed pouch mucosa possesses altered tight junctions indicating recurrence of inflammatory bowel disease. Int. J. Color. Dis. 2009, 24, 1149–1156. [Google Scholar] [CrossRef]
- Jones, K.R.; Whitmire, J.M.; Merrell, D.S. A tale of two toxins: Helicobacter pylori CagA and VacA modulate host pathways that impact disease. Front. Microbiol. 2010, 1, 6955. [Google Scholar] [CrossRef]
- Backert, S.; Schmidt, T.P.; Harrer, A.; Wessler, S. Exploiting the Gastric Epithelial Barrier: Helicobacter pylori’s Attack on Tight and Adherens Junctions. In Molecular Pathogenesis and Signal Transduction by Helicobacter Pylori; Current Topics in Microbiology and Immunology; Springer: Cham, Switzerland, 2017; pp. 195–226. [Google Scholar] [CrossRef]
- Dunjic, B.S.; Svensson, I.; Axelson, J.; Adlercreutz, P.; Ar’rajab, A.; Larsson, K.; Bengmark, S. Green Banana Protection of Gastric Mucosa against Experimentally Induced Injuries in Rats. Scand. J. Gastroenterol. 1993, 28, 894–898. [Google Scholar] [CrossRef]
- Dunjic, B.S.; Axelson, J.; Ar’Rajab, A.; Larsson, K.; Bengmark, S. Gastroprotective capability of exogenous phosphatidylcholine in experimentally induced chronic gastric ulcers in rats. Scand. J. Gastroenterol. 1993, 28, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Stremmel, W.; Merle, U.; Zahn, A.; Autschbach, F.; Hinz, U.; Ehehalt, R. Retarded release phosphatidylcholine benefits patients with chronic active ulcerative colitis. Gut 2005, 54, 966–971. [Google Scholar] [CrossRef] [PubMed]
- Stremmel, W.; Ehehalt, R.; Autschbach, F.; Karner, M. Phosphatidylcholine for steroid-refractory chronic ulcerative colitis. Ann. Intern. Med. 2007, 147, 603. [Google Scholar] [CrossRef] [PubMed]
- Stremmel, W.; Braun, A.; Hanemann, A.; Ehehalt, R.; Autschbach, F.; Karner, M. Delayed release phosphatidylcholine in chronic-active ulcerative colitis: A randomized, double-blinded, dose finding study. J. Clin. Gastroenterol. 2010, 44, e101–e107. [Google Scholar] [CrossRef]
- Stremmel, W.; Hanemann, A.; Ehehalt, R.; Karner, M.; Braun, A. Phosphatidylcholine (lecithin) and the mucus layer: Evidence of therapeutic efficacy in ulcerative colitis? Dig Dis. 2010, 28, 490–496. [Google Scholar] [CrossRef]
- Zahn, A.; Hinz, U.; Karner, M.; Ehehalt, R.; Stremmel, W. Health-related quality of life correlates with clinical and endoscopic activity indexes but not with demographic features in patients with ulcerative colitis. Inflamm. Bowel Dis. 2006, 12, 1058–1067. [Google Scholar] [CrossRef]
- Stremmel, W.; Staffer, S.; Gehrke, S. The detergent effect of mesalazine interferes with phosphatidylcholine binding to Mucin 2. Inflamm. Intest. Dis. 2018, 3, 107–115. [Google Scholar] [CrossRef]
- Anes, E.; Kühnel, M.P.; Bos, E.; Moniz-Pereira, J.; Habermann, A.; Griffiths, G. Selected lipids activate phagosome actin assembly and maturation resulting in killing of pathogenic mycobacteria. Nat. Cell Biol. 2003, 5, 793–802. [Google Scholar] [CrossRef]
- Bercik, P.; Verdu, E.F.; Collins, S.M. Is irritable bowel syndrome a Low-grade inflammatory bowel disease? Gastroenterol. Clin. N. Am. 2005, 34, 235–245. [Google Scholar] [CrossRef]
- Ng, Q.X.; Soh, A.Y.S.; Loke, W.; Lim, D.Y.; Yeo, W.-S. The role of inflammation in irritable bowel syndrome (IBS). J. Inflamm. Res. 2018, 11, 345–349. [Google Scholar] [CrossRef]
- Heller, F.; Fromm, A.; Gitter, A.H.; Mankertz, J.; Schulzke, J. Epithelial apoptosis is a prominent feature of the epithelial barrier disturbance in intestinal inflammation: Effect of pro-inflammatory interleukin-13 on epithelial cell function. Mucosal Immunol. 2008, 1, S58–S61. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, M. Leaky gut: Mechanisms, measurement and clinical implications in humans. Gut 2019, 68, 1516–1526. [Google Scholar] [CrossRef] [PubMed]
- Boicean, A.; Ichim, C.; Todor, S.B.; Anderco, P.; Popa, M.L. The importance of microbiota and fecal microbiota transplantation in pancreatic disorders. Diagnostics 2024, 14, 861. [Google Scholar] [CrossRef] [PubMed]
- Manzhalii, E.; Hornuss, D.; Stremmel, W. Intestinal-borne dermatoses significantly improved by oral application of Escherichia coli Nissle 1917. World J. Gastroenterol. 2016, 22, 5415. [Google Scholar] [CrossRef] [PubMed]
- Beuers, U.; Kullak-Ublick, G.A.; Pusl, T.; Rauws, E.R.; Rust, C. Medical treatment of primary sclerosing cholangitis: A role for novel bile acids and other (post-)transcriptional modulators? Clin. Rev. Allergy Immunol. 2008, 36, 52–61. [Google Scholar] [CrossRef]
- Fickert, P.; Hirschfield, G.M.; Denk, G.; Marschall, H.-U.; Altorjay, I.; Färkkilä, M.; Schramm, C.; Spengler, U.; Chapman, R.; Bergquist, A.; et al. norUrsodeoxycholic acid improves cholestasis in primary sclerosing cholangitis. J. Hepatol. 2017, 67, 549–558. [Google Scholar] [CrossRef]
- Stremmel, C.; Stremmel, W.; Kadioglu, O.; Efferth, T.; Weiskirchen, R. The bile acid phospholipid conjugate ursodeoxycholate lysophoshatidylethanolamide acts by binding to calcium independent membrane phospholipase A2 type beta. AME Med. J. 2021, 6, 24. [Google Scholar] [CrossRef]
- Stremmel, W.; Staffer, S.; Wannhoff, A.; Pathil, A.; Chamulitrat, W. Plasma membrane phospholipase A2 controls hepatocellular fatty acid uptake and is responsive to pharmacological modulation: Implications for nonalcoholic steatohepatitis. FASEB J. 2014, 28, 3159–3170. [Google Scholar] [CrossRef]
Substance | Mucus | Surfactant | Membrane |
---|---|---|---|
Lysophosphatidylcholine | 33 | 0 | 2 |
Sphingomyelin | 7 | 0 | 16 |
Phosphatidylinositol | 2 | 0 | 14 |
Phosphatidylcholine | 58 | 85 | 22 |
Phosphatidylserine | 0 | 0 | 18 |
Phosphatidylethanolamine | 0 | 5 | 28 |
Phosphatidylglycerol | 0 | 10 | 0 |
Impaired PC transport to mucus |
|
Secondary to inflammation |
|
Secondary to ischemia |
|
Secondary to reduced mucosal surface |
|
Overgrowth of ectophospholipase bacteria |
A | Induction of Remission (n = 60 Patients), 3 Randomized Controlled Trials (RCT) | ||||||
---|---|---|---|---|---|---|---|
Phase | PC (g/Day) | Remission | Clinical Improvement | Endoscopic Improvement | Histology Improvement | Life Quality Improvement | Cohort |
IIa | 0 2 | 3/30 16/30 | 3/30 27/30 | 0/30 11/30 | 3/30 13/30 | 2/30 16/30 | Active UC (efficacy testing) [55] n = 60 |
IIa | 0 2 | 3/30 12/30 | 3/30 15/30 | 1/30 21/30 | 10/30 15/30 | 5/30 13/30 | Steroid refractory UC (efficacy testing) [56] n = 60 |
IIB | 0.5 1.0 3.0 4.0 | 0/10 3/10 5/10 6/10 | 0/10 7/10 7/10 7/10 | 0/0 5/10 6/10 6/10 | 0/10 3/10 4/10 5/10 | 1/10 4/10 6/10 6/10 | Active UC (dose-finding study) n = 40 [57] |
B | Maintenance of Remission (n = 80 Patients) | ||||||
PC (g/day) | 8 Weeks Follow-up | 26 Months Follow-up | Cohort Patients in remission by PC n = 80 [58] | ||||
0 | 20/40 | 2/20 | |||||
2 | 30/40 | 10/30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stremmel, W.; Weiskirchen, R. Phosphatidylcholine in Intestinal Mucus Protects against Mucosal Invasion of Microbiota and Consequent Inflammation. Livers 2024, 4, 479-494. https://doi.org/10.3390/livers4030034
Stremmel W, Weiskirchen R. Phosphatidylcholine in Intestinal Mucus Protects against Mucosal Invasion of Microbiota and Consequent Inflammation. Livers. 2024; 4(3):479-494. https://doi.org/10.3390/livers4030034
Chicago/Turabian StyleStremmel, Wolfgang, and Ralf Weiskirchen. 2024. "Phosphatidylcholine in Intestinal Mucus Protects against Mucosal Invasion of Microbiota and Consequent Inflammation" Livers 4, no. 3: 479-494. https://doi.org/10.3390/livers4030034
APA StyleStremmel, W., & Weiskirchen, R. (2024). Phosphatidylcholine in Intestinal Mucus Protects against Mucosal Invasion of Microbiota and Consequent Inflammation. Livers, 4(3), 479-494. https://doi.org/10.3390/livers4030034