The Evolution of Robotic Surgery through the Machine Design Innovation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations and Papers Selection
2.2. Endpoint and Study Design
3. Discussion
3.1. Robotic Platforms Preceding 2000s
3.2. Crafting the Future: The Evolution of Robotic Design in the Third Millennium
3.2.1. From ZEUS® to daVinci® SP®
3.2.2. Senhance®
3.2.3. Revo-I®
3.2.4. Versius®
3.2.5. Avatera®
3.2.6. Hinotori®
3.2.7. HugoTM RAS
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gharagozloo, F.; Tempesta, B.; Meyer, M.; Nguyen, D.; Gruessner, S.; Redan, J. History of Robotic Surgery. In Robotic Surgery; Springer International Publishing: Cham, Switzerland, 2021; pp. 21–29. [Google Scholar]
- Brassetti, A.; Ragusa, A.; Tedesco, F.; Prata, F.; Cacciatore, L.; Iannuzzi, A.; Bove, A.M.; Anceschi, U.; Proietti, F.; D’Annunzio, S.; et al. Robotic Surgery in Urology: History from PROBOT® to HUGOTM. Sensors 2023, 23, 7104. [Google Scholar] [CrossRef] [PubMed]
- Hockstein, N.G.; Gourin, C.G.; Faust, R.A.; Terris, D.J. A History of Robots: From Science Fiction to Surgical Robotics. J. Robot. Surg. 2007, 1, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Leal Ghezzi, T.; Campos Corleta, O. 30 Years of Robotic Surgery. World J. Surg. 2016, 40, 2550–2557. [Google Scholar] [CrossRef] [PubMed]
- Goertz, R.C. Remote-Control Manipulator. US Patent US2695715A, 6 February 1953. [Google Scholar]
- Goertz, R.C. Fundamentals of General Purpose Remote Manipulators. Nucleonics 1952, 1001, 36–42. [Google Scholar]
- Kwoh, Y.S.; Hou, J.; Jonckheere, E.A.; Hayati, S. A Robot with Improved Absolute Positioning Accuracy for CT Guided Stereotactic Brain Surgery. IEEE Trans. Biomed. Eng. 1988, 35, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Davies, B.L.; Hibberd, R.D.; Ng, W.S.; Timoney, A.G.; Wickham, J.E.A. The Development of a Surgeon Robot for Prostatectomies. Proc. Inst. Mech. Eng. H 1991, 205, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Stefano, G.B. Robotic Surgery: Fast Forward to Telemedicine. Med. Sci. Monit. 2017, 23, 1856. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.J.; Arambula-Cosio, F.; Mei, Q.; Hibberd, R.D.; Davies, B.L.; Wickham, J.E.; Nathan, M.S.; Kundu, B. The Probot—An Active Robot for Prostate Resection. Proc. Inst. Mech. Eng. H 1997, 211, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Paul, H.A.; Bargar, W.L.; Mittlestadt, B.; Musits, B.; Taylor, R.H.; Kazanzides, P.; Zuhars, J.; Williamson, B.; Hanson, W. Development of a Surgical Robot for Cementless Total Hip Arthroplasty. Clin. Orthop. Relat. Res. 1992, 285, 57–66. [Google Scholar] [CrossRef]
- Sackier, J.M.; Wang, Y. Robotically Assisted Laparoscopic Surgery. From Concept to Development. Surg. Endosc. 1994, 8, 63–66. [Google Scholar] [CrossRef]
- Ewing, D.R.; Pigazzi, A.; Wang, Y.; Ballantyne, G.H. Robots in the Operating Room–the History. Semin. Laparosc. Surg. 2004, 11, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Unger, S.W.; Unger, H.M.; Bass, R.T. AESOP Robotic Arm. Surg. Endosc. 1994, 8, 1131. [Google Scholar] [CrossRef] [PubMed]
- Parekattil, S.J.; Moran, M.E. Robotic Instrumentation: Evolution and Microsurgical Applications. Indian J. Urol. 2010, 26, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Green, P.S.; Hill, J.W.; Jensen, J.F.; Shah, A. Telepresence Surgery. IEEE Eng. Med. Biol. 1995, 14, 324–329. [Google Scholar] [CrossRef]
- Zajtchuk, R.; Grande, R. Part IV Surgical Combat Casualty Care: Anesthesia and Perioperative Care of the Combat Casualty; Textbook of Military Medicine; Office of The Surgeon General at TMM Publications: Washington, DC, USA, 1995; Volume 1. [Google Scholar]
- George, E.I.; Brand, T.C.; La Porta, A.; Marescaux, J.; Satava, R.M. Origins of Robotic Surgery: From Skepticism to Standard of Care. JSLS 2018, 22, e2018.00039. [Google Scholar] [CrossRef] [PubMed]
- Satava, R.M. Robotic Surgery: From Past to Future—A Personal Journey. Surg. Clin. N. Am. 2003, 83, 1491–1500. [Google Scholar] [CrossRef] [PubMed]
- Kavoussi, L.R.; Moore, R.G.; Adams, J.B.; Partin, A.W. Comparison of Robotic versus Human Laparoscopic Camera Control. J. Urol. 1997, 154, 2134–2136. [Google Scholar] [CrossRef]
- Bacá, I.; Schultz, C.; Grzybowski, L.; Göetzen, V. Voice-Controlled Robotic Arm in Laparoscopic Surgery. Croat. Med. J. 1999, 40, 409–412. [Google Scholar] [PubMed]
- Reichenspurner, H.; Damiano, R.J.; Mack, M.; Boehm, D.H.; Gulbins, H.; Detter, C.; Meiser, B.; Ellgass, R.; Reichart, B. Use of the Voice-Controlled and Computer-Assisted Surgical System ZEUS for Endoscopic Coronary Artery Bypass Grafting. J. Thorac. Cardiovasc. Surg. 1999, 118, 11–16. [Google Scholar] [CrossRef]
- Morrell, A.L.G.; Morrell-Junior, A.C.; Morrell, A.G.; Mendes, J.M.F.; Tustumi, F.; De-Oliveira-e-silva, L.G.; Morrell, A. The History of Robotic Surgery and Its Evolution: When Illusion Becomes Reality. Rev. Col. Bras. Cir. 2021, 48, e20202798. [Google Scholar] [CrossRef]
- Marescaux, J.; Rubino, F. The ZEUS Robotic System: Experimental and Clinical Applications. Surg. Clin. N. Am. 2003, 83, 1305–1315. [Google Scholar] [CrossRef] [PubMed]
- Falcone, T.; Goldberg, J.; Garcia-Ruiz, A.; Margossian, H.; Stevens, L. Full Robotic Assistance for Laparoscopic Tubal Anastomosis: A Case Report. J. Laparoendosc. Adv. Surg. Tech. A 1999, 9, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Hashizume, M.; Konishi, K.; Tsutsumi, N.; Yamaguchi, S.; Shimabukuro, R. A New Era of Robotic Surgery Assisted by a Computer-Enhanced Surgical System. Surgery 2002, 131, S330–S333. [Google Scholar] [CrossRef] [PubMed]
- Hanly, E.J.; Talamini, M.A. Robotic Abdominal Surgery. Am. J. Surg. 2004, 188, 19–26. [Google Scholar] [CrossRef]
- Hagen, M.; Stein, H.; Curet, M. Introduction to the Robotic System. In Robotics in General Surgery; Kim, C.H., Ed.; Springer: New York, NY, USA, 2014; pp. 9–16. [Google Scholar]
- Tewari, A.; Menon, M. Vattikuti Institute Prostatectomy: Surgical Technique and Current Results. Curr. Urol. Rep. 2003, 4, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Luciani, L.G.; Chiodini, S.; Mattevi, D.; Cai, T.; Puglisi, M.; Mantovani, W.; Malossini, G. Robotic-Assisted Partial Nephrectomy Provides Better Operative Outcomes as Compared to the Laparoscopic and Open Approaches: Results from a Prospective Cohort Study. J. Robot. Surg. 2017, 11, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Hyams, E.S.; Mufarrij, P.W.; Stifelman, M.D. Robotic Renal and Upper Tract Reconstruction. Curr. Opin. Urol. 2008, 18, 557–563. [Google Scholar] [CrossRef]
- Cohen, A.J.; Pariser, J.J.; Anderson, B.B.; Pearce, S.M.; Gundeti, M.S. The Robotic Appendicovesicostomy and Bladder Augmentation: The next Frontier in Robotics, Are We There? Urol. Clin. N. Am. 2015, 42, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Robot Wars: $60B Intuitive Surgical Dominated Its Market for 20 Years. Now Rivals Like Alphabet Are Moving in. Available online: https://www.forbes.com/sites/michelatindera/2019/02/14/intuitive-surgical-stock-robot-surgery-da-vinci-alphabet-jnj-ceo-gary-guthart/#565d4979a37b (accessed on 24 June 2023).
- Marescaux, J.; Leroy, J.; Gagner, M.; Rubino, F.; Mutter, D.; Vix, M.; Butner, S.E.; Smith, M.K. Transatlantic Robot-Assisted Telesurgery. Nature 2001, 413, 379–380. [Google Scholar] [CrossRef]
- Gosrisirikul, C.; Don Chang, K.; Raheem, A.A.; Rha, K.H. New Era of Robotic Surgical Systems. Asian J. Endosc. Surg. 2018, 11, 291–299. [Google Scholar] [CrossRef] [PubMed]
- LaMattina, J.C.; Alvarez-Casas, J.; Lu, I.; Powell, J.M.; Sultan, S.; Phelan, M.W.; Barth, R.N. Robotic-Assisted Single-Port Donor Nephrectomy Using the Da Vinci Single-Site Platform. J. Surg. Res. 2018, 222, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Gaboardi, F.; Pini, G.; Suardi, N.; Montorsi, F.; Passaretti, G.; Smelzo, S. Robotic Laparoendoscopic Single-Site Radical Prostatectomy (R-LESS-RP) with DaVinci Single-Site® Platform. Concept and Evolution of the Technique Following an IDEAL Phase 1. J. Robot. Surg. 2019, 13, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Dobbs, R.W.; Halgrimson, W.R.; Talamini, S.; Vigneswaran, H.T.; Wilson, J.O.; Crivellaro, S. Single-Port Robotic Surgery: The next Generation of Minimally Invasive Urology. World J. Urol. 2020, 38, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Covas Moschovas, M.; Bhat, S.; Rogers, T.; Onol, F.; Roof, S.; Mazzone, E.; Mottrie, A.; Patel, V. Technical Modifications Necessary to Implement the Da Vinci Single-Port Robotic System. Eur. Urol. 2020, 78, 415–423. [Google Scholar] [CrossRef]
- Agarwal, D.K.; Sharma, V.; Toussi, A.; Viers, B.R.; Tollefson, M.K.; Gettman, M.T.; Frank, I. Initial Experience with Da Vinci Single-Port Robot-Assisted Radical Prostatectomies. Eur. Urol. 2020, 77, 373–379. [Google Scholar] [CrossRef]
- Kaouk, J.; Garisto, J.; Eltemamy, M.; Bertolo, R. Step-by-Step Technique for Single-Port Robot-Assisted Radical Cystectomy and Pelvic Lymph Nodes Dissection Using the Da Vinci® SPTM Surgical System. BJU Int. 2019, 124, 707–712. [Google Scholar] [CrossRef]
- Zhang, M.; Thomas, D.; Salama, G.; Ahmed, M. Single Port Robotic Radical Cystectomy with Intracorporeal Urinary Diversion: A Case Series and Review. Transl. Androl. Urol. 2020, 9, 925–930. [Google Scholar] [CrossRef]
- Fanfani, F.; Restaino, S.; Rossitto, C.; Gueli Alletti, S.; Costantini, B.; Monterossi, G.; Cappuccio, S.; Perrone, E.; Scambia, G. Total Laparoscopic (S-LPS) versus TELELAP ALF-X Robotic-Assisted Hysterectomy: A Case-Control Study. J. Minim. Invasive Gynecol. 2016, 23, 933–938. [Google Scholar] [CrossRef]
- Spinelli, A.; David, G.; Gidaro, S.; Carvello, M.; Sacchi, M.; Montorsi, M.; Montroni, I. First Experience in Colorectal Surgery with a New Robotic Platform with Haptic Feedback. Colorectal Dis. 2017, 20, 228–235. [Google Scholar] [CrossRef]
- Rao, P.P. Robotic Surgery: New Robots and Finally Some Real Competition! World J. Urol. 2018, 36, 537–541. [Google Scholar] [CrossRef]
- Bozzini, G.; Gidaro, S.; Taverna, G. Robot-Assisted Laparoscopic Partial Nephrectomy with the ALF-X Robot on Pig Models. Eur. Urol. 2016, 69, 376–377. [Google Scholar] [CrossRef] [PubMed]
- Kaštelan, Ž.; Knežević, N.; Hudolin, T.; Kuliš, T.; Penezić, L.; Goluža, E.; Gidaro, S.; Ćorušić, A. Extraperitoneal Radical Prostatectomy with the Senhance Surgical System Robotic Platform. Croat. Med. J. 2019, 60, 556–557. [Google Scholar] [CrossRef]
- Samalavicius, N.E.; Janusonis, V.; Siaulys, R.; Jasėnas, M.; Deduchovas, O.; Venckus, R.; Ezerskiene, V.; Paskeviciute, R.; Klimaviciute, G. Robotic Surgery Using Senhance® Robotic Platform: Single Center Experience with First 100 Cases. J. Robot. Surg. 2020, 14, 371–376. [Google Scholar] [CrossRef]
- Lim, J.H.; Lee, W.J.; Park, D.W.; Yea, H.J.; Kim, S.H.; Kang, C.M. Robotic Cholecystectomy Using Revo-i Model MSR-5000, the Newly Developed Korean Robotic Surgical System: A Preclinical Study. Surg. Endosc. 2017, 31, 3391–3397. [Google Scholar] [CrossRef]
- Kim, D.K.; Park, D.W.; Rha, K.H. Robot-Assisted Partial Nephrectomy with the REVO-I Robot Platform in Porcine Models. Eur. Urol. 2016, 69, 541–542. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.D.; Abdel Raheem, A.; Choi, Y.D.; Chung, B.H.; Rha, K.H. Retzius-Sparing Robot-Assisted Radical Prostatectomy Using the Revo-i Robotic Surgical System: Surgical Technique and Results of the First Human Trial. BJU Int. 2018, 122, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Thomas, B.C.; Slack, M.; Hussain, M.; Barber, N.; Pradhan, A.; Dinneen, E.; Stewart, G.D. Preclinical Evaluation of the Versius Surgical System, a New Robot-Assisted Surgical Device for Use in Minimal Access Renal and Prostate Surgery. Eur. Urol. Focus 2021, 7, 444–452. [Google Scholar] [CrossRef]
- Morton, J.; Hardwick, R.H.; Tilney, H.S.; Gudgeon, A.M.; Jah, A.; Stevens, L.; Marecik, S.; Slack, M. Preclinical Evaluation of the Versius Surgical System, a New Robot-Assisted Surgical Device for Use in Minimal Access General and Colorectal Procedures. Surg. Endosc. 2021, 35, 2169–2177. [Google Scholar] [CrossRef] [PubMed]
- Peters, B.S.; Armijo, P.R.; Krause, C.; Choudhury, S.A.; Oleynikov, D. Review of Emerging Surgical Robotic Technology. Surg. Endosc. 2018, 32, 1636–1655. [Google Scholar] [CrossRef] [PubMed]
- Puntambekar, S.P.; Goel, A.; Chandak, S.; Chitale, M.; Hivre, M.; Chahal, H.; Rajesh, K.N.; Manerikar, K. Feasibility of Robotic Radical Hysterectomy (RRH) with a New Robotic System. Experience at Galaxy Care Laparoscopy Institute. J. Robot. Surg. 2021, 15, 451–456. [Google Scholar] [CrossRef]
- Medicaroid’s Hinotori Surgical Robot System Approved in Japan. Available online: http://surgrob.blogspot.com/2020/08/medicaroids-hinotori-surgical-robot.html (accessed on 26 June 2023).
- News-Detail-Avateramedical. Available online: https://www.avatera.eu/en/company/news/detail?tx_news_pi1%5Bnews%5D=19&cHash=0b499a1adf30ef40b4d441aa562e0a7b (accessed on 26 June 2023).
- Prata, F.; Raso, G.; Ragusa, A.; Iannuzzi, A.; Tedesco, F.; Cacciatore, L.; Civitella, A.; Tuzzolo, P.; D’Addurno, G.; Callè, P.; et al. Robot-Assisted Renal Surgery with the New Hugo Ras System: Trocar Placement and Docking Settings. J. Pers. Med. 2023, 13, 1372. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.medicaroid.com/en/product/hinotori/ (accessed on 13 August 2020).
- Ragavan, N.; Bharathkumar, S.; Chirravur, P.; Sankaran, S.; Mottrie, A. Evaluation of Hugo RAS System in Major Urologic Surgery: Our Initial Experience. J. Endourol. 2022, 36, 1029–1035. [Google Scholar] [CrossRef] [PubMed]
- Ragavan, N.; Bharathkumar, S.; Chirravur, P.; Sankaran, S. Robot-Assisted Laparoscopic Radical Prostatectomy Utilizing Hugo RAS Platform: Initial Experience. J. Endourol. 2023, 37, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Prata, F.; Ragusa, A.; Civitella, A.; Tuzzolo, P.; Tedesco, F.; Cacciatore, L.; Iannuzzi, A.; Callè, P.; Raso, G.; Fantozzi, M.; et al. Robot-Assisted Partial Nephrectomy Using the Novel HugoTM RAS System: Feasibility, Setting and Perioperative Outcomes of the First off-Clamp Series. Urol. J. 2024, 91, 372–378. [Google Scholar] [CrossRef]
- Prata, F.; Ragusa, A.; Anceschi, U.; Civitella, A.; Tuzzolo, P.; Tedesco, F.; Cacciatore, L.; Iannuzzi, A.; Callè, P.; Raso, G.; et al. Hugo RAS Robot-Assisted Partial Nephrectomy for High-Nephrometry Score Complex Renal Mass: Case Report and Surgical Technique. Videourology 2023, 37. [Google Scholar] [CrossRef]
- Prata, F.; Ragusa, A.; Anceschi, U.; Iannuzzi, A.; Tedesco, F.; Cacciatore, L.; Civitella, A.; Tuzzolo, P.; Cirillo, R.; Callè, P.; et al. Three-arms Off-clamp Robot-assisted Partial Nephrectomy with the New Hugo Robot-assisted Surgery System. BJU Int. 2024, 133, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Prata, F.; Ragusa, A.; Tempesta, C.; Iannuzzi, A.; Tedesco, F.; Cacciatore, L.; Raso, G.; Civitella, A.; Tuzzolo, P.; Callè, P.; et al. State of the Art in Robotic Surgery with Hugo RAS System: Feasibility, Safety and Clinical Applications. J. Pers. Med. 2023, 13, 1233. [Google Scholar] [CrossRef] [PubMed]
- Marino, F.; Moretto, S.; Rossi, F.; Gandi, C.; Gavi, F.; Bientinesi, R.; Campetella, M.; Russo, P.; Bizzarri, F.P.; Scarciglia, E.; et al. Robot-Assisted Radical Prostatectomy Performed with the Novel Hugo™ RAS System: A Systematic Review and Pooled Analysis of Surgical, Oncological, and Functional Outcomes. J. Clin. Med. 2024, 13, 2551. [Google Scholar] [CrossRef]
- Esperto, F.; Cacciatore, L.; Tedesco, F.; Testa, A.; Callè, P.; Ragusa, A.; Deanesi, N.; Minore, A.; Prata, F.; Brassetti, A.; et al. Impact of Robotic Technologies on Prostate Cancer Patients’ Choice for Radical Treatment. J. Pers. Med. 2023, 13, 794. [Google Scholar] [CrossRef]
Robotic Platform | Clearance | N° of Robotic Arm Carts | Haptic Feedback | Special Features and Design |
---|---|---|---|---|
Senhance® | 2017 FDA | Up to 4, independent | ✓ |
|
Revo-I® | 2017 Korean Ministry of Food and Drug Safety | 1 | ✗ |
|
Versius® | 2019 European CE Mark | Up to 4, independent | ✓ |
|
Avatera® | 2019 Europe | 1 | ✗ |
|
Hinotori® | 2020 Japanese Ministry of Health, Labor, and Welfare | 1 | ✗ |
|
HugoTM RAS | 2022 European Economic Area (EEA) | Up to 4, independent | ✗ |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ragusa, A.; Prata, F.; Iannuzzi, A.; Tedesco, F.; Cacciatore, L.; Brassetti, A.; Muto, G.; Scarpa, R.M.; Papalia, R. The Evolution of Robotic Surgery through the Machine Design Innovation. Uro 2024, 4, 124-135. https://doi.org/10.3390/uro4030010
Ragusa A, Prata F, Iannuzzi A, Tedesco F, Cacciatore L, Brassetti A, Muto G, Scarpa RM, Papalia R. The Evolution of Robotic Surgery through the Machine Design Innovation. Uro. 2024; 4(3):124-135. https://doi.org/10.3390/uro4030010
Chicago/Turabian StyleRagusa, Alberto, Francesco Prata, Andrea Iannuzzi, Francesco Tedesco, Loris Cacciatore, Aldo Brassetti, Giovanni Muto, Roberto Mario Scarpa, and Rocco Papalia. 2024. "The Evolution of Robotic Surgery through the Machine Design Innovation" Uro 4, no. 3: 124-135. https://doi.org/10.3390/uro4030010
APA StyleRagusa, A., Prata, F., Iannuzzi, A., Tedesco, F., Cacciatore, L., Brassetti, A., Muto, G., Scarpa, R. M., & Papalia, R. (2024). The Evolution of Robotic Surgery through the Machine Design Innovation. Uro, 4(3), 124-135. https://doi.org/10.3390/uro4030010