The Genetic Landscape of Male Factor Infertility and Implications for Men’s Health and Future Generations
Abstract
:1. Introduction
2. Genetics and Male Factor Infertility
3. Sex Chromosome Anomalies
3.1. Numerical (Aneuploidy)
3.2. Deletions of the Y Chromosome
3.3. X-Linked Disorders
4. Autosomal Anomalies
4.1. Rearrangement Anomalies (i.e., Deletions, Duplications, Inversions, and Translocations)
4.2. Mutations
5. Sperm Epigenome
6. Emerging Results from Whole-Genome Sequencing Studies
7. Parental Subfertility and Reproductive Health in Male Offspring
8. Effects on Semen Quality
9. Effects on Reproductive Hormonal Profile
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- WHO. Infertility. Available online: https://www.who.int/news-room/fact-sheets/detail/infertility (accessed on 9 December 2024).
- Vignozzi, L.; Cipriani, S.; Lippi, D. Why couple infertility is historically a female-driven problem? Andrology 2024. early view. [Google Scholar] [CrossRef]
- Turner, K.A.; Rambhatla, A.; Schon, S.; Agarwal, A.; Krawetz, S.A.; Dupree, J.M.; Avidor-Reiss, T. Male Infertility is a Women’s Health Issue-Research and Clinical Evaluation of Male Infertility Is Needed. Cells 2020, 9, 990. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J. Not every sperm is sacred; a perspective on male infertility. Mol. Hum. Reprod. 2018, 24, 287–298. [Google Scholar] [CrossRef]
- Guzick, D.S.; Overstreet, J.W.; Factor-Litvak, P.; Brazil, C.K.; Nakajima, S.T.; Coutifaris, C.; Carson, S.A.; Cisneros, P.; Steinkampf, M.P.; Hill, J.A.; et al. Sperm morphology, motility, and concentration in fertile and infertile men. N. Engl. J. Med. 2001, 345, 1388–1393. [Google Scholar] [CrossRef]
- Lu, C.; Xu, M.; Wang, R.; Qin, Y.; Ren, J.; Wu, W.; Song, L.; Wang, S.; Zhou, Z.; Shen, H.; et al. A genome-wide association study of mitochondrial DNA in Chinese men identifies two risk single nucleotide substitutions for idiopathic oligoasthenospermia. Mitochondrion 2015, 24, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Urology, E.A.O. Sexual and Reproductive Health Guidelines. Available online: https://uroweb.org/guidelines/sexual-and-reproductive-health/chapter/male-infertility (accessed on 9 December 2024).
- Glazer, C.H.; Bonde, J.P.; Giwercman, A.; Vassard, D.; Pinborg, A.; Schmidt, L.; Vaclavik Bräuner, E. Risk of diabetes according to male factor infertility: A register-based cohort study. Hum. Reprod. 2017, 32, 1474–1481. [Google Scholar] [CrossRef] [PubMed]
- Glazer, C.H.; Bonde, J.P.; Eisenberg, M.L.; Giwercman, A.; Hærvig, K.K.; Rimborg, S.; Vassard, D.; Pinborg, A.; Schmidt, L.; Bräuner, E.V. Male Infertility and Risk of Nonmalignant Chronic Diseases: A Systematic Review of the Epidemiological Evidence. Semin. Reprod. Med. 2017, 35, 282–290. [Google Scholar] [CrossRef]
- Eisenberg, M.L.; Betts, P.; Herder, D.; Lamb, D.J.; Lipshultz, L.I. Increased risk of cancer among azoospermic men. Fertil. Steril. 2013, 100, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Glazer, C.H.; Eisenberg, M.L.; Tøttenborg, S.S.; Giwercman, A.; Flachs, E.M.; Bräuner, E.V.; Vassard, D.; Pinborg, A.; Schmidt, L.; Bonde, J.P. Male factor infertility and risk of death: A nationwide record-linkage study. Hum. Reprod. 2019, 34, 2266–2273. [Google Scholar] [CrossRef] [PubMed]
- Inhorn, M.C.; Patrizio, P. Infertility around the globe: New thinking on gender, reproductive technologies and global movements in the 21st century. Hum. Reprod. Update 2015, 21, 411–426. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, M.N.; Flaxman, S.R.; Boerma, T.; Vanderpoel, S.; Stevens, G.A. National, regional, and global trends in infertility prevalence since 1990: A systematic analysis of 277 health surveys. PLoS Med 2012, 9, e1001356. [Google Scholar] [CrossRef]
- Kushnir, V.A.; Barad, D.H.; Albertini, D.F.; Darmon, S.K.; Gleicher, N. Systematic review of worldwide trends in assisted reproductive technology 2004–2013. Reprod Biol. Endocrinol. 2017, 15, 6. [Google Scholar] [CrossRef]
- Magnus, M.C.; Fraser, A.; Håberg, S.E.; Rönö, K.; Romundstad, L.B.; Bergh, C.; Spangmose, A.L.; Pinborg, A.; Gissler, M.; Wennerholm, U.B.; et al. Maternal Risk of Cardiovascular Disease After Use of Assisted Reproductive Technologies. JAMA Cardiol. 2023, 8, 837–845. [Google Scholar] [CrossRef]
- Vassard, D.; Schmidt, L.; Pinborg, A.; Petersen, G.L.; Forman, J.L.; Hageman, I.; Glazer, C.H.; Kamper-Jørgensen, M. Mortality in Women Treated With Assisted Reproductive Technology-Addressing the Healthy Patient Effect. Am. J. Epidemiol. 2018, 187, 1889–1895. [Google Scholar] [CrossRef] [PubMed]
- Neto, F.T.; Bach, P.V.; Najari, B.B.; Li, P.S.; Goldstein, M. Genetics of Male Infertility. Curr. Urol. Rep. 2016, 17, 70. [Google Scholar] [CrossRef] [PubMed]
- Palermo, G.D.; Colombero, L.T.; Hariprashad, J.J.; Schlegel, P.N.; Rosenwaks, Z. Chromosome analysis of epididymal and testicular sperm in azoospermic patients undergoing ICSI. Hum. Reprod. 2002, 17, 570–575. [Google Scholar] [CrossRef]
- Bernardini, L.; Gianaroli, L.; Fortini, D.; Conte, N.; Magli, C.; Cavani, S.; Gaggero, G.; Tindiglia, C.; Ragni, N.; Venturini, P.L. Frequency of hyper-, hypohaploidy and diploidy in ejaculate, epididymal and testicular germ cells of infertile patients. Hum. Reprod. 2000, 15, 2165–2172. [Google Scholar] [CrossRef]
- Walsh, T.; Pera, R.; Turek, P. The Genetics of Male Infertility. Semin. Reprod. Med. 2009, 27, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Lanfranco, F.; Kamischke, A.; Zitzmann, M.; Nieschlag, E. Klinefelter’s syndrome. Lancet 2004, 364, 273–283. [Google Scholar] [CrossRef]
- Foresta, C.; Garolla, A.; Bartoloni, L.; Bettella, A.; Ferlin, A. Genetic abnormalities among severely oligospermic men who are candidates for intracytoplasmic sperm injection. J. Clin. Endocrinol. Metab. 2005, 90, 152–156. [Google Scholar] [CrossRef]
- Hotaling, J.; Carrell, D.T. Clinical genetic testing for male factor infertility: Current applications and future directions. Andrology 2014, 2, 339–350. [Google Scholar] [CrossRef]
- Ferlin, A.; Raicu, F.; Gatta, V.; Zuccarello, D.; Palka, G.; Foresta, C. Male infertility: Role of genetic background. Reprod. Biomed. Online 2007, 14, 734–745. [Google Scholar] [CrossRef]
- Foresta, C.; Galeazzi, C.; Bettella, A.; Marin, P.; Rossato, M.; Garolla, A.; Ferlin, A. Analysis of meiosis in intratesticular germ cells from subjects affected by classic Klinefelter’s syndrome. J. Clin. Endocrinol. Metab. 1999, 84, 3807–3810. [Google Scholar] [CrossRef]
- Foresta, C.; Galeazzi, C.; Bettella, A.; Stella, M.; Scandellari, C. High incidence of sperm sex chromosomes aneuploidies in two patients with Klinefelter’s syndrome. J. Clin. Endocrinol. Metab. 1998, 83, 203–205. [Google Scholar] [CrossRef]
- Cozzi, J.; Chevret, E.; Rousseaux, S.; Pelletier, R.; Benitz, V.; Jalbert, H.; Sèle, B. Achievement of meiosis in XXY germ cells: Study of 543 sperm karyotypes from an XY/XXY mosaic patient. Hum. Genet. 1994, 93, 32–34. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Martin, R.H. Aneuploidy in human spermatozoa: FISH analysis in men with constitutional chromosomal abnormalities, and in infertile men. Reproduction 2001, 121, 655–666. [Google Scholar] [CrossRef]
- Blanco, J.; Egozcue, J.; Vidal, F. Meiotic behaviour of the sex chromosomes in three patients with sex chromosome anomalies (47,XXY, mosaic 46,XY/47,XXY and 47,XYY) assessed by fluorescence in-situ hybridization. Hum. Reprod. 2001, 16, 887–892. [Google Scholar] [CrossRef]
- Bergère, M.; Wainer, R.; Nataf, V.; Bailly, M.; Gombault, M.; Ville, Y.; Selva, J. Biopsied testis cells of four 47,XXY patients: Fluorescence in-situ hybridization and ICSI results. Hum. Reprod. 2002, 17, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Maiburg, M.; Repping, S.; Giltay, J. The genetic origin of Klinefelter syndrome and its effect on spermatogenesis. Fertil. Steril. 2012, 98, 253–260. [Google Scholar] [CrossRef]
- Thomas, N.S.; Hassold, T.J. Aberrant recombination and the origin of Klinefelter syndrome. Hum. Reprod. Update 2003, 9, 309–317. [Google Scholar] [CrossRef]
- Stemkens, D.; Roza, T.; Verrij, L.; Swaab, H.; van Werkhoven, M.K.; Alizadeh, B.Z.; Sinke, R.J.; Giltay, J.C. Is there an influence of X-chromosomal imprinting on the phenotype in Klinefelter syndrome? A clinical and molecular genetic study of 61 cases. Clin. Genet. 2006, 70, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Lampitto, M.; Barchi, M. Recent advances in mechanisms ensuring the pairing, synapsis and segregation of XY chromosomes in mice and humans. Cell Mol. Life Sci. 2024, 81, 194. [Google Scholar] [CrossRef]
- Sun, F.; Turek, P.; Greene, C.; Ko, E.; Rademaker, A.; Martin, R.H. Abnormal progression through meiosis in men with nonobstructive azoospermia. Fertil. Steril. 2007, 87, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, H.; Zhang, H.; Wang, L.; Li, M.; Cai, F.; Wang, X.; Wang, L.; Zhang, R.; Yang, S.; et al. Paternal USP26 mutations raise Klinefelter syndrome risk in the offspring of mice and humans. Embo J. 2021, 40, e106864. [Google Scholar] [CrossRef] [PubMed]
- Yarali, H.; Polat, M.; Bozdag, G.; Gunel, M.; Alpas, I.; Esinler, I.; Dogan, U.; Tiras, B. TESE-ICSI in patients with non-mosaic Klinefelter syndrome: A comparative study. Reprod. Biomed. Online 2009, 18, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, I.; Syrrou, M.; Pardalidis, N.; Karakitsios, K.; Mantzavinos, T.; Giotitsas, N.; Loutradis, D.; Dimitriadis, F.; Saito, M.; Miyagawa, I.; et al. Genetic and epigenetic risks of intracytoplasmic sperm injection method. Asian J. Androl. 2006, 8, 643–673. [Google Scholar] [CrossRef]
- Rhie, A.; Nurk, S.; Cechova, M.; Hoyt, S.J.; Taylor, D.J.; Altemose, N.; Hook, P.W.; Koren, S.; Rautiainen, M.; Alexandrov, I.A.; et al. The complete sequence of a human Y chromosome. Nature 2023, 621, 344–354. [Google Scholar] [CrossRef]
- Skaletsky, H.; Kuroda-Kawaguchi, T.; Minx, P.J.; Cordum, H.S.; Hillier, L.; Brown, L.G.; Repping, S.; Pyntikova, T.; Ali, J.; Bieri, T.; et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 2003, 423, 825–837. [Google Scholar] [CrossRef] [PubMed]
- Colaco, S.; Modi, D. Genetics of the human Y chromosome and its association with male infertility. Reprod. Biol. Endocrinol. 2018, 16, 14. [Google Scholar] [CrossRef]
- Choudhuri, S.; Deng, C.Y.; Zhang, Z.; Tang, W.H.; Jiang, H. Microdeletions and vertical transmission of the Y-chromosome azoospermia factor region. Asian J. Androl. 2023, 25, 5–12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lo Giacco, D.; Chianese, C.; Sánchez-Curbelo, J.; Bassas, L.; Ruiz, P.; Rajmil, O.; Sarquella, J.; Vives, A.; Ruiz-Castañé, E.; Oliva, R.; et al. Clinical relevance of Y-linked CNV screening in male infertility: New insights based on the 8-year experience of a diagnostic genetic laboratory. Eur. J. Hum. Genet. 2014, 22, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Simoni, M.; Tüttelmann, F.; Gromoll, J.; Nieschlag, E. Clinical consequences of microdeletions of the Y chromosome: The extended Münster experience. Reprod. Biomed. Online 2008, 16, 289–303. [Google Scholar] [CrossRef]
- Krausz, C.; Casamonti, E. Spermatogenic failure and the Y chromosome. Hum. Genet. 2017, 136, 637–655. [Google Scholar] [CrossRef]
- Vogt, P.H. Azoospermia factor (AZF) in Yq11: Towards a molecular understanding of its function for human male fertility and spermatogenesis. Reprod. Biomed. Online 2005, 10, 81–93. [Google Scholar] [CrossRef]
- Nuti, F.; Krausz, C. Gene polymorphisms/mutations relevant to abnormal spermatogenesis. Reprod. Biomed. Online 2008, 16, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Vogt, P.H. Human chromosome deletions in Yq11, AZF candidate genes and male infertility: History and update. Mol. Hum. Reprod. 1998, 4, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Ferlin, A.; Moro, E.; Rossi, A.; Dallapiccola, B.; Foresta, C. The human Y chromosome’s azoospermia factor b (AZFb) region: Sequence, structure, and deletion analysis in infertile men. J. Med. Genet. 2003, 40, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Lee, H.S.; Choe, J.H.; Lee, J.S.; Seo, J.T. Success rate of microsurgical multiple testicular sperm extraction and sperm presence in the ejaculate in korean men with y chromosome microdeletions. Korean J. Urol. 2013, 54, 536–540. [Google Scholar] [CrossRef]
- Longepied, G.; Saut, N.; Aknin-Seifer, I.; Levy, R.; Frances, A.M.; Metzler-Guillemain, C.; Guichaoua, M.R.; Mitchell, M.J. Complete deletion of the AZFb interval from the Y chromosome in an oligozoospermic man. Hum. Reprod. 2010, 25, 2655–2663. [Google Scholar] [CrossRef]
- Kleiman, S.E.; Yogev, L.; Lehavi, O.; Hauser, R.; Botchan, A.; Paz, G.; Yavetz, H.; Gamzu, R. The likelihood of finding mature sperm cells in men with AZFb or AZFb-c deletions: Six new cases and a review of the literature (1994–2010). Fertil. Steril. 2011, 95, 2005–2012. [Google Scholar] [CrossRef]
- Hopps, C.V.; Mielnik, A.; Goldstein, M.; Palermo, G.D.; Rosenwaks, Z.; Schlegel, P.N. Detection of sperm in men with Y chromosome microdeletions of the AZFa, AZFb and AZFc regions. Hum. Reprod. 2003, 18, 1660–1665. [Google Scholar] [CrossRef]
- Kleiman, S.E.; Bar-Shira Maymon, B.; Yogev, L.; Paz, G.; Yavetz, H. The prognostic role of the extent of Y microdeletion on spermatogenesis and maturity of Sertoli cells. Hum. Reprod. 2001, 16, 399–402. [Google Scholar] [CrossRef] [PubMed]
- Ferlin, A.; Moro, E.; Onisto, M.; Toscano, E.; Bettella, A.; Foresta, C. Absence of testicular DAZ gene expression in idiopathic severe testiculopathies. Hum. Reprod. 1999, 14, 2286–2292. [Google Scholar] [CrossRef] [PubMed]
- Lange, J.; Skaletsky, H.; van Daalen, S.K.; Embry, S.L.; Korver, C.M.; Brown, L.G.; Oates, R.D.; Silber, S.; Repping, S.; Page, D.C. Isodicentric Y chromosomes and sex disorders as byproducts of homologous recombination that maintains palindromes. Cell 2009, 138, 855–869. [Google Scholar] [CrossRef]
- Kee, K.; Angeles, V.T.; Flores, M.; Nguyen, H.N.; Reijo Pera, R.A. Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation. Nature 2009, 462, 222–225. [Google Scholar] [CrossRef]
- Kühnert, B.; Gromoll, J.; Kostova, E.; Tschanter, P.; Luetjens, C.M.; Simoni, M.; Nieschlag, E. Case report: Natural transmission of an AZFc Y-chromosomal microdeletion from father to his sons. Hum. Reprod. 2004, 19, 886–888. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, M.; Li, L.; Su, D.; Chen, P.; Ma, Y.; Liu, Y.; Tao, D.; Lin, L.; Zhang, S. Differential effect of specific gr/gr deletion subtypes on spermatogenesis in the Chinese Han population. Int. J. Androl. 2010, 33, 745–754. [Google Scholar] [CrossRef]
- Sin, H.S.; Koh, E.; Shigehara, K.; Sugimoto, K.; Maeda, Y.; Yoshida, A.; Kyono, K.; Namiki, M. Features of constitutive gr/gr deletion in a Japanese population. Hum. Reprod. 2010, 25, 2396–2403. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.J.; McCarrey, J.R.; Yang, F.; Page, D.C. An abundance of X-linked genes expressed in spermatogonia. Nat. Genet. 2001, 27, 422–426. [Google Scholar] [CrossRef]
- Smith, L.B.; Walker, W.H. The regulation of spermatogenesis by androgens. Semin. Cell Dev. Biol. 2014, 30, 2–13. [Google Scholar] [CrossRef]
- Gottlieb, B.; Beitel, L.K.; Nadarajah, A.; Paliouras, M.; Trifiro, M. The androgen receptor gene mutations database: 2012 update. Hum. Mutat. 2012, 33, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.H.; Nguyen, D.Q.; Kim, L.N.T.; Thi, T.N.N.; Nguyen, T.P.M.; Tran, N.D.; Nguyen, H.H. Four novel mutations in the androgen receptor gene from Vietnamese patients with androgen insensitivity syndrome. Genes. Genomics 2023, 45, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Zitzmann, M.; Nieschlag, E. The CAG repeat polymorphism within the androgen receptor gene and maleness. Int. J. Androl. 2003, 26, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Yong, E.L.; Loy, C.J.; Sim, K.S. Androgen receptor gene and male infertility. Hum. Reprod. Update 2003, 9, 1–7. [Google Scholar] [CrossRef]
- Dowsing, A.T.; Yong, E.L.; Clark, M.; McLachlan, R.I.; de Kretser, D.M.; Trounson, A.O. Linkage between male infertility and trinucleotide repeat expansion in the androgen-receptor gene. Lancet 1999, 354, 640–643. [Google Scholar] [CrossRef]
- Ferlin, A.; Bartoloni, L.; Rizzo, G.; Roverato, A.; Garolla, A.; Foresta, C. Androgen receptor gene CAG and GGC repeat lengths in idiopathic male infertility. Mol. Hum. Reprod. 2004, 10, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Rajpert-De Meyts, E.; Leffers, H.; Petersen, J.H.; Andersen, A.G.; Carlsen, E.; Jørgensen, N.; Skakkebaek, N.E. CAG repeat length in androgen-receptor gene and reproductive variables in fertile and infertile men. Lancet 2002, 359, 44–46. [Google Scholar] [CrossRef]
- Ruhayel, Y.; Lundin, K.; Giwercman, Y.; Halldén, C.; Willén, M.; Giwercman, A. Androgen receptor gene GGN and CAG polymorphisms among severely oligozoospermic and azoospermic Swedish men. Hum. Reprod. 2004, 19, 2076–2083. [Google Scholar] [CrossRef] [PubMed]
- Osadchuk, L.; Vasiliev, G.; Kleshchev, M.; Osadchuk, A. Androgen Receptor Gene CAG Repeat Length Varies and Affects Semen Quality in an Ethnic-Specific Fashion in Young Men from Russia. Int. J. Mol. Sci. 2022, 23, 10594. [Google Scholar] [CrossRef]
- Cram, D.S.; Song, B.; McLachlan, R.I.; Trounson, A.O. CAG trinucleotide repeats in the androgen receptor gene of infertile men exhibit stable inheritance in female offspring conceived after ICSI. Mol. Hum. Reprod. 2000, 6, 861–866. [Google Scholar] [CrossRef] [PubMed]
- Patrizio, P.; Leonard, D.G.; Chen, K.L.; Hernandez-Ayup, S.; Trounson, A.O. Larger trinucleotide repeat size in the androgen receptor gene of infertile men with extremely severe oligozoospermia. J. Androl. 2001, 22, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, Y.; Neri, Q.V.; Takeuchi, T.; Moy, F.; Sills, E.S.; Palermo, G.D. Androgen receptor CAG polymorphism (Xq11-12) status and human spermatogenesis: A prospective analysis of infertile males and their offspring conceived by intracytoplasmic sperm injection. Int. J. Mol. Med. 2006, 18, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, A.P.; Robins, D.M. The androgen receptor’s CAG/glutamine tract in mouse models of neurological disease and cancer. J. Alzheimers Dis. 2008, 14, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Boehm, U.; Bouloux, P.M.; Dattani, M.T.; de Roux, N.; Dodé, C.; Dunkel, L.; Dwyer, A.A.; Giacobini, P.; Hardelin, J.P.; Juul, A.; et al. Expert consensus document: European Consensus Statement on congenital hypogonadotropic hypogonadism--pathogenesis, diagnosis and treatment. Nat. Rev. Endocrinol. 2015, 11, 547–564. [Google Scholar] [CrossRef] [PubMed]
- Quaynor, S.D.; Bosley, M.E.; Duckworth, C.G.; Porter, K.R.; Kim, S.H.; Kim, H.G.; Chorich, L.P.; Sullivan, M.E.; Choi, J.H.; Cameron, R.S.; et al. Targeted next generation sequencing approach identifies eighteen new candidate genes in normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Mol. Cell Endocrinol. 2016, 437, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Layman, L.C.; Cohen, D.P.; Jin, M.; Xie, J.; Li, Z.; Reindollar, R.H.; Bolbolan, S.; Bick, D.P.; Sherins, R.R.; Duck, L.W.; et al. Mutations in gonadotropin-releasing hormone receptor gene cause hypogonadotropic hypogonadism. Nat. Genet. 1998, 18, 14–15. [Google Scholar] [CrossRef] [PubMed]
- Dodé, C.; Levilliers, J.; Dupont, J.M.; De Paepe, A.; Le Dû, N.; Soussi-Yanicostas, N.; Coimbra, R.S.; Delmaghani, S.; Compain-Nouaille, S.; Baverel, F.; et al. Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat. Genet. 2003, 33, 463–465. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, A.A.; Raivio, T.; Pitteloud, N. Management of endocrine disease: Reversible hypogonadotropic hypogonadism. Eur. J. Endocrinol. 2016, 174, R267–R274. [Google Scholar] [CrossRef] [PubMed]
- Yatsenko, A.N.; Georgiadis, A.P.; Röpke, A.; Berman, A.J.; Jaffe, T.; Olszewska, M.; Westernströer, B.; Sanfilippo, J.; Kurpisz, M.; Rajkovic, A.; et al. X-linked TEX11 mutations, meiotic arrest, and azoospermia in infertile men. N. Engl. J. Med. 2015, 372, 2097–2107. [Google Scholar] [CrossRef]
- Yang, F.; Silber, S.; Leu, N.A.; Oates, R.D.; Marszalek, J.D.; Skaletsky, H.; Brown, L.G.; Rozen, S.; Page, D.C.; Wang, P.J. TEX11 is mutated in infertile men with azoospermia and regulates genome-wide recombination rates in mouse. EMBO Mol. Med. 2015, 7, 1198–1210. [Google Scholar] [CrossRef] [PubMed]
- Vincent, M.C.; Daudin, M.; De, M.P.; Massat, G.; Mieusset, R.; Pontonnier, F.; Calvas, P.; Bujan, L.; Bourrouillout, G. Cytogenetic investigations of infertile men with low sperm counts: A 25-year experience. J. Androl. 2002, 23, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Minhas, S.; Bettocchi, C.; Boeri, L.; Capogrosso, P.; Carvalho, J.; Cilesiz, N.C.; Cocci, A.; Corona, G.; Dimitropoulos, K.; Gül, M.; et al. European Association of Urology Guidelines on Male Sexual and Reproductive Health: 2021 Update on Male Infertility. Eur. Urol. 2021, 80, 603–620. [Google Scholar] [CrossRef]
- Van Assche, E.; Bonduelle, M.; Tournaye, H.; Joris, H.; Verheyen, G.; Devroey, P.; Van Steirteghem, A.; Liebaers, I. Cytogenetics of infertile men. Hum. Reprod. 1996, 11 (Suppl. S4), 1–24, discussion 25–26. [Google Scholar] [CrossRef]
- Suzumori, N.; Sugiura-Ogasawara, M. Genetic factors as a cause of miscarriage. Curr. Med. Chem. 2010, 17, 3431–3437. [Google Scholar] [CrossRef] [PubMed]
- Carrell, D.T. The clinical implementation of sperm chromosome aneuploidy testing: Pitfalls and promises. J. Androl. 2008, 29, 124–133. [Google Scholar] [CrossRef]
- Yu, J.; Chen, Z.; Ni, Y.; Li, Z. CFTR mutations in men with congenital bilateral absence of the vas deferens (CBAVD): A systemic review and meta-analysis. Hum. Reprod. 2012, 27, 25–35. [Google Scholar] [CrossRef]
- Rommens, J.M.; Iannuzzi, M.C.; Kerem, B.; Drumm, M.L.; Melmer, G.; Dean, M.; Rozmahel, R.; Cole, J.L.; Kennedy, D.; Hidaka, N.; et al. Identification of the cystic fibrosis gene: Chromosome walking and jumping. Science 1989, 245, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Cutting, G.R. Cystic fibrosis genetics: From molecular understanding to clinical application. Nat. Rev. Genet. 2015, 16, 45–56. [Google Scholar] [CrossRef]
- Veit, G.; Avramescu, R.G.; Chiang, A.N.; Houck, S.A.; Cai, Z.; Peters, K.W.; Hong, J.S.; Pollard, H.B.; Guggino, W.B.; Balch, W.E.; et al. From CFTR biology toward combinatorial pharmacotherapy: Expanded classification of cystic fibrosis mutations. Mol. Biol. Cell 2016, 27, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Brannigan, R.E.; Hermanson, L.; Kaczmarek, J.; Kim, S.K.; Kirkby, E.; Tanrikut, C. Updates to Male Infertility: AUA/ASRM Guideline. J. Urol. 2024, 212, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Messerschmidt, D.M.; Knowles, B.B.; Solter, D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes. Dev. 2014, 28, 812–828. [Google Scholar] [CrossRef] [PubMed]
- Hammoud, S.S.; Nix, D.A.; Zhang, H.; Purwar, J.; Carrell, D.T.; Cairns, B.R. Distinctive chromatin in human sperm packages genes for embryo development. Nature 2009, 460, 473–478. [Google Scholar] [CrossRef]
- Hammoud, S.S.; Nix, D.A.; Hammoud, A.O.; Gibson, M.; Cairns, B.R.; Carrell, D.T. Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men. Hum. Reprod. 2011, 26, 2558–2569. [Google Scholar] [CrossRef] [PubMed]
- Aston, K.I.; Punj, V.; Liu, L.; Carrell, D.T. Genome-wide sperm deoxyribonucleic acid methylation is altered in some men with abnormal chromatin packaging or poor in vitro fertilization embryogenesis. Fertil. Steril. 2012, 97, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.J.; Costa, P.; Vaz, B.; Carvalho, F.; Fernandes, S.; Barros, A.; Sousa, M. Abnormal methylation of imprinted genes in human sperm is associated with oligozoospermia. Mol. Hum. Reprod. 2008, 14, 67–74. [Google Scholar] [CrossRef]
- Kobayashi, H.; Hiura, H.; John, R.M.; Sato, A.; Otsu, E.; Kobayashi, N.; Suzuki, R.; Suzuki, F.; Hayashi, C.; Utsunomiya, T.; et al. DNA methylation errors at imprinted loci after assisted conception originate in the parental sperm. Eur. J. Hum. Genet. 2009, 17, 1582–1591. [Google Scholar] [CrossRef]
- Hammoud, S.S.; Purwar, J.; Pflueger, C.; Cairns, B.R.; Carrell, D.T. Alterations in sperm DNA methylation patterns at imprinted loci in two classes of infertility. Fertil. Steril. 2010, 94, 1728–1733. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Huang, Y.; Li, H.; Hu, J.; Liu, X.; Jiang, T.; Sun, G.; Tang, A.; Sun, X.; Qian, W.; et al. Excess of rare variants in genes that are key epigenetic regulators of spermatogenesis in the patients with non-obstructive azoospermia. Sci. Rep. 2015, 5, 8785. [Google Scholar] [CrossRef]
- Jenkins, T.G.; Aston, K.I.; Cairns, B.R.; Carrell, D.T. Paternal aging and associated intraindividual alterations of global sperm 5-methylcytosine and 5-hydroxymethylcytosine levels. Fertil. Steril. 2013, 100, 945–951. [Google Scholar] [CrossRef]
- Krausz, C. Male infertility: Pathogenesis and clinical diagnosis. Best. Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 271–285. [Google Scholar] [CrossRef]
- Service, R.F. Gene sequencing. The race for the $1000 genome. Science 2006, 311, 1544–1546. [Google Scholar] [CrossRef] [PubMed]
- LeMieux, J. Ultima Unveiling: Big Black Box Sparks Preprint Debate. GEN Biotechnol. 2022, 1, 322–326. [Google Scholar] [CrossRef]
- Amiri-Yekta, A.; Coutton, C.; Kherraf, Z.E.; Karaouzène, T.; Le Tanno, P.; Sanati, M.H.; Sabbaghian, M.; Almadani, N.; Sadighi Gilani, M.A.; Hosseini, S.H.; et al. Whole-exome sequencing of familial cases of multiple morphological abnormalities of the sperm flagella (MMAF) reveals new DNAH1 mutations. Hum. Reprod. 2016, 31, 2872–2880. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.R.; Akbari, A.; Nicholas, T.J.; Castillo-Madeen, H.; Ajmal, M.; Haq, T.U.; Laan, M.; Quinlan, A.R.; Ahuja, J.S.; Shah, A.A.; et al. Genome sequencing of Pakistani families with male infertility identifies deleterious genotypes in SPAG6, CCDC9, TKTL1, TUBA3C, and M1AP. Andrology 2023. early view. [Google Scholar] [CrossRef] [PubMed]
- Belkadi, A.; Bolze, A.; Itan, Y.; Cobat, A.; Vincent, Q.B.; Antipenko, A.; Shang, L.; Boisson, B.; Casanova, J.L.; Abel, L. Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc. Natl. Acad. Sci. USA 2015, 112, 5473–5478. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, S.H.; Spielmann, M.; Mundlos, S.; Veltman, J.A.; Gilissen, C. Comparison of Exome and Genome Sequencing Technologies for the Complete Capture of Protein-Coding Regions. Hum. Mutat. 2015, 36, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Kyrgiafini, M.A.; Giannoulis, T.; Chatziparasidou, A.; Christoforidis, N.; Mamuris, Z. Unveiling the Genetic Complexity of Teratozoospermia: Integrated Genomic Analysis Reveals Novel Insights into lncRNAs’ Role in Male Infertility. Int. J. Mol. Sci. 2023, 24, 15002. [Google Scholar] [CrossRef] [PubMed]
- Gershoni, M.; Hauser, R.; Yogev, L.; Lehavi, O.; Azem, F.; Yavetz, H.; Pietrokovski, S.; Kleiman, S.E. A familial study of azoospermic men identifies three novel causative mutations in three new human azoospermia genes. Genet. Med. 2017, 19, 998–1006. [Google Scholar] [CrossRef]
- Wang, X.; Jin, H.; Han, F.; Cui, Y.; Chen, J.; Yang, C.; Zhu, P.; Wang, W.; Jiao, G.; Wang, W.; et al. Homozygous DNAH1 frameshift mutation causes multiple morphological anomalies of the sperm flagella in Chinese. Clin. Genet. 2017, 91, 313–321. [Google Scholar] [CrossRef]
- Al-Agha, A.E.; Ahmed, I.A.; Nuebel, E.; Moriwaki, M.; Moore, B.; Peacock, K.A.; Mosbruger, T.; Neklason, D.W.; Jorde, L.B.; Yandell, M.; et al. Primary Ovarian Insufficiency and Azoospermia in Carriers of a Homozygous PSMC3IP Stop Gain Mutation. J. Clin. Endocrinol. Metab. 2018, 103, 555–563. [Google Scholar] [CrossRef]
- Luo, T.; Chen, H.Y.; Zou, Q.X.; Wang, T.; Cheng, Y.M.; Wang, H.F.; Wang, F.; Jin, Z.L.; Chen, Y.; Weng, S.Q.; et al. A novel copy number variation in CATSPER2 causes idiopathic male infertility with normal semen parameters. Hum. Reprod. 2019, 34, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Yuan, F.; Li, Q.; Xia, R.; Fu, K.; Xue, B.; Liu, X. Whole-genome sequencing analysis of Y chromosome microdeletion: A case report. J. Int. Med. Res. 2020, 48, 300060520976494. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.; Wang, Y.; Wang, K.; Kong, S.; Lu, M.; Zhang, J.; Duan, Z.; Zha, X.; Shi, X.; Wang, F.; et al. Novel Mutation and Deletion in SUN5 Cause Male Infertility with Acephalic Spermatozoa Syndrome. Reprod. Sci. 2022, 29, 646–651. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.; Wang, Y.; Xu, W.; Zheng, N.; Zhang, J.; Duan, Z.; Zha, X.; Shi, X.; Wang, F.; Cao, Y.; et al. Pathogenesis of acephalic spermatozoa syndrome caused by splicing mutation and de novo deletion in TSGA10. J. Assist. Reprod. Genet. 2021, 38, 2791–2799. [Google Scholar] [CrossRef]
- Zhang, Q.; Jin, H.; Long, S.; Tang, X.; Li, J.; Liu, W.; Han, W.; Liao, H.; Fu, T.; Huang, G.; et al. Deletion of ACTRT1 is associated with male infertility as sperm acrosomal ultrastructural defects and fertilization failure in human. Hum. Reprod. 2024, 39, 880–891. [Google Scholar] [CrossRef] [PubMed]
- Malcher, A.; Stokowy, T.; Berman, A.; Olszewska, M.; Jedrzejczak, P.; Sielski, D.; Nowakowski, A.; Rozwadowska, N.; Yatsenko, A.N.; Kurpisz, M.K. Whole-genome sequencing identifies new candidate genes for nonobstructive azoospermia. Andrology 2022, 10, 1605–1624. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.M.; Cooper, D.N.; Schuelke, M.; Seelow, D. MutationTaster2: Mutation prediction for the deep-sequencing age. Nat. Methods 2014, 11, 361–362. [Google Scholar] [CrossRef]
- Fohn, L.E.; Behringer, R.R. ESX1L, a novel X chromosome-linked human homeobox gene expressed in the placenta and testis. Genomics 2001, 74, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Yanagihara, M.; Ishikawa, S.; Naito, M.; Nakajima, J.; Aburatani, H.; Hatakeyama, M. Paired-like homeoprotein ESXR1 acts as a sequence-specific transcriptional repressor of the human K-ras gene. Oncogene 2005, 24, 5878–5887. [Google Scholar] [CrossRef] [PubMed]
- Malcher, A.; Graczyk, Z.; Bauer, H.; Stokowy, T.; Berman, A.; Smolibowski, M.; Blaszczyk, D.; Jedrzejczak, P.; Yatsenko, A.N.; Kurpisz, M. ESX1 gene as a potential candidate responsible for male infertility in nonobstructive azoospermia. Sci. Rep. 2023, 13, 16563. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T.K.; Jorgensen, N.; Asklund, C.; Carlsen, E.; Holm, M.; Skakkebaek, N.E. Fertility treatment and reproductive health of male offspring: A study of 1,925 young men from the general population. Am. J. Epidemiol. 2007, 165, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Belva, F.; Bonduelle, M.; Roelants, M.; Michielsen, D.; Van Steirteghem, A.; Verheyen, G.; Tournaye, H. Semen quality of young adult ICSI offspring: The first results. Hum. Reprod. 2016, 31, 2811–2820. [Google Scholar] [CrossRef] [PubMed]
- Ramlau-Hansen, C.H.; Thulstrup, A.M.; Olsen, J.; Bonde, J.P. Parental subfecundity and risk of decreased semen quality in the male offspring: A follow-up study. Am. J. Epidemiol. 2008, 167, 1458–1464. [Google Scholar] [CrossRef]
- Arendt, L.H.; Gaml-Sorensen, A.; Ernst, A.; Brix, N.; Toft, G.; Tottenborg, S.S.; Hougaard, K.S.; Bonde, J.P.E.; Ramlau-Hansen, C.H. Semen quality and reproductive hormones in sons of subfertile couples: A cohort study. Fertil. Steril. 2022, 118, 671–678. [Google Scholar] [CrossRef]
- Catford, S.R.; Halliday, J.; Lewis, S.; O’Bryan, M.K.; Handelsman, D.J.; Hart, R.J.; McBain, J.; Rombauts, L.; Amor, D.J.; Saffery, R.; et al. Reproductive function in men conceived with in vitro fertilization and intracytoplasmic sperm injection. Fertil. Steril. 2022, 117, 727–737. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Laboratory Manual for the Examination and Processing of Human Semen, 5th ed.; WHO: Geneva, Switzerland, 2010. [Google Scholar]
Mechanism | Description | Key Features | Clinical Relevance |
---|---|---|---|
Sex Chromosome Anomalies | |||
Numerical (Aneuploidy) | Errors during cellular replication resulting in missing or extra chromosomes. | Common examples include Klinefelter syndrome (47,XXY), XYY syndrome, and XX male syndrome. | Associated with azoospermia and oligospermia; advancements in sperm retrieval and ICSI have improved fertility outcomes for affected individuals. |
Y-Chromosome Deletions | Deletions in the male-specific Y chromosome (MSY), particularly in AZF regions (AZFa, AZFb, AZFc). | AZFa deletions associated with Sertoli-cell-only syndrome; AZFb deletions with spermatogenic arrest; AZFc deletions linked to oligozoospermia or azoospermia. | Successful sperm retrieval in ~50% of cases with AZFc deletions; genetic counseling recommended due to obligate inheritance of Y-chromosome anomalies. |
X-Linked Disorders | Mutations or polymorphisms in X-linked genes affecting spermatogenesis and hormonal regulation. | Androgen receptor (AR) gene mutations linked to androgen insensitivity syndromes; TEX11 mutations causing meiotic arrest in idiopathic non-obstructive azoospermia (NOA). | Critical for identifying underlying causes of idiopathic infertility; highlights the importance of genetic counseling and targeted therapies. |
Autosomal Anomalies | |||
Chromosomal Rearrangements | Structural changes, such as translocations or inversions, disrupting normal gene expression. | Robertsonian translocations commonly involve chromosomes 13, 14, 15, 21, and 22. | Found in ~1.6% of infertile men; associated with increased risk of miscarriage and congenital anomalies. |
Mutations (e.g., CFTR) | Mutations in autosomal genes like CFTR (associated with congenital bilateral absence of the vas deferens). | Over 2000 mutations identified; spectrum of effects ranges from obstructive azoospermia to severe cystic fibrosis. | Recommended genetic screening and preimplantation genetic diagnosis (PGD) for affected couples undergoing ART. |
Sperm Epigenome | |||
Epigenetic Dysregulation | Non-genetic changes affecting gene expression through DNA methylation, histone modification, or chromatin packing. | Altered DNA methylation and histone density linked to poor spermatogenesis and embryogenesis; paternal age may influence global methylation patterns. | Advances in whole-genome sequencing (WGS) and artificial intelligence offer potential for better understanding and therapeutic interventions in epigenetic-related infertility. |
Author, Year | Aim | Study Design | Exposed Group | Control Group | Outcome | Main Findings | Strengths | Weaknesses |
---|---|---|---|---|---|---|---|---|
Jensen, 2006 | The association between maternal fertility treatment and reproductive health in offspring | Cross-sectional | Young men whose mothers had received fertility treatment N = 47 | Young men conceived without fertility treatment N = 176 | Semen quality Hormone assay | Men whose mothers had received fertility treatment had lower sperm concentration and count, smaller testicles, and fewer motile and morphologically normal spermatozoa compared to control group. No significant differences in hormone assay. | Semen analysis was conducted blindly and with an external quality program. | The article does not distinguish between different types of fertility treatment. No information on paternal fertility. One semen sample |
Ramlau-Hansen, 2008 | The association between parental subfertility and reproductive health in offspring | Cross-sectional | Sons of couples with a TTP > 7 months N = 67 | Sons of couples with a TTP < 5 months N = 244 | Semen quality Hormone assay | Parental TTP was inversely correlated to semen volume and total sperm count in sons. | Provides insight on hereditary factors. | One semen sample |
Belva, 2016 | Reproductive health of males conceived by ICSI for male factor infertility | Cohort study | Young men conceived by ICSI (“ICSI men”) N = 54 | Young men conceived spontaneously N = 57 | Semen quality | ICSI men had lower median sperm concentrations, total sperm counts, and motile sperm count in comparison to the men who were spontaneously conceived Sperm concentration and motile count in fathers did not correlate with corresponding values in their sons | Differences persisted after adjustment for factors related to decreased semen quality. No self-reported data. | The control group were friends of the exposed group and recruited at college and university campuses, which might not be representative of the background population No information on paternal male factor infertility. One semen sample |
Arendt, 2021 | Reproductive health of men conceived by couples with a long time to pregnancy, with medically assisted reproduction or IVF/ICSI | Cohort study | Sons of couples with 1) TTP >12 months, 2) conceived by MAR or 3) by IVF/ICSI N = 245 | Sons of couples with a TTP < 5 months N = 632 | Semen quality Hormone assay | No associations between long TTP and semen quality on offspring. Sons conceived after IVF or ICSI had 30% higher estradiol levels | Detailed information on prenatal factors (TTP, type of MAR) and various confounders. | Low participation rate (19%) Not enough statistical power to distinguish between IVF or ICSI. No information on the cause of prolonged TTP. One semen sample |
Catford, 2021 | The reproductive health of men conceived by IVF/ICSI compared to men conceived naturally | Cohort study | Men conceived by IVF/ICSI N = 120 | Men conceived without assisted reproductive technology N = 356 | Semen quality Hormone assay | Mean total and progressive sperm motility were lower in men conceived with IVF/ICSI than the control group. Men conceived with IVF/ICSI had lower mean serum FSH and LH levels than control group. They had higher mean serum testosterone levels. | Men conceived without ART were unbiased. | Clinical significance of the findings in sperm motility and morphology is unclear. Recruitment of volunteers for studies requiring semen is very low and vulnerable to participation bias. One semen sample |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Black, K.; Ølgaard, S.; Khoei, A.A.; Glazer, C.; Ohl, D.A.; Jensen, C.F.S. The Genetic Landscape of Male Factor Infertility and Implications for Men’s Health and Future Generations. Uro 2025, 5, 2. https://doi.org/10.3390/uro5010002
Black K, Ølgaard S, Khoei AA, Glazer C, Ohl DA, Jensen CFS. The Genetic Landscape of Male Factor Infertility and Implications for Men’s Health and Future Generations. Uro. 2025; 5(1):2. https://doi.org/10.3390/uro5010002
Chicago/Turabian StyleBlack, Kristian, Sofie Ølgaard, Amelia A. Khoei, Clara Glazer, Dana A. Ohl, and Christian Fuglesang S. Jensen. 2025. "The Genetic Landscape of Male Factor Infertility and Implications for Men’s Health and Future Generations" Uro 5, no. 1: 2. https://doi.org/10.3390/uro5010002
APA StyleBlack, K., Ølgaard, S., Khoei, A. A., Glazer, C., Ohl, D. A., & Jensen, C. F. S. (2025). The Genetic Landscape of Male Factor Infertility and Implications for Men’s Health and Future Generations. Uro, 5(1), 2. https://doi.org/10.3390/uro5010002