Role of Ionic Liquids in Capillary Electrophoresis
Abstract
:1. Introduction
2. Ionic Liquids
3. Capillary Electrophoresis
4. Applications of ILs in CE
4.1. Separation of Phytochemicals
4.2. Separation of Pharmaceutical Drugs
4.3. Separation of Chiral Compounds
- (1)
- the ionic potential of the active buffer, which can be altered by the addition of chiral ionic liquids, and these differences may affect the electroosmotic flow rate (EOF) and current strength, thus causing changes in migration times and efficiency of separation [42];
- (2)
- cation adsorption within the area of the capillary can diminish or reverse EOF to contribute to differentiation [42];
- (3)
- the tail height of some basic enantiomers may be partially suppressed by competition for advertising IL cations on the inner wall of capillary [43]; and
- (4)
- some achiral ionic liquids may be involved in the enantio-recognition process, especially if cyclodextrins or their derivatives are used as chiral selectors (e.g., by influencing the formation of complex compounds [44].
- (1)
- tetraalkylammonium based ionic liquids are almost hydrophilic and less likely to take the chirrup hydrophobic cavity of selectors (e.g., cyclodextrins or their derivatives); and
- (2)
- tetraalkylammonium derived ionic liquids are relatively incompatible and exhibit UV exposure to wavelengths where enantiomers are commonly found.
4.4. Other Applications in CE
5. Optimization in the Separation
Optimization in Chiral Separation
6. Separation Mechanism
7. Toxicity
8. Advantages and Disadvantages of ILs in CE
9. Future Perspectives
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, I.; Aboul-Enein, H.Y.; Gupta, V.K. Nanochromatography and Nanocapillary Electrophoresis: Pharmaceutical and Environmental Analyses; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Ali, I.; Alothman, Z.A.; Alwarthan, A.; Aboul-Enein, H.Y. Applications of Ionic Liquids in Chemical Science. Nov. Dev. Pharm. Biomed. Anal. 2018, 2, 382–412. [Google Scholar]
- Ali, I.; Suhail, M.; Sanagi, M.M.; Aboul-Enein, H.Y. Ionic Liquids in HPLC and CE: A Hope for Future. Crit. Rev. Anal. Chem. 2017, 47, 332–339. [Google Scholar] [CrossRef]
- Ali, I.; Alothman, Z.A.; Alwarthan, A. Uptake of Propranolol on Ionic Liquid Iron Nanocomposite Adsorbent: Kinetic, Thermodynamics and Mechanism of Adsorption. J. Mol. Liq. 2017, 236, 205–213. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Lau, R.M.; Sorgedrager, M.J.; van Rantwijk, F.; Seddon, K.R. Biocatalysis in Ionic Liquids. Green Chem. 2002, 4, 147–151. [Google Scholar] [CrossRef]
- Endres, F.; El Abedin, S.Z. Air and Water Stable Ionic Liquids in Physical Chemistry. Phys. Chem. Chem. Phys. 2006, 8, 2101. [Google Scholar] [CrossRef]
- Wilkes, J.S. A Short History of Ionic Liquids—from Molten Salts to Neoteric Solvents. Green Chem. 2002, 4, 73–80. [Google Scholar] [CrossRef]
- Huddleston, J.G.; Visser, A.E.; Reichert, W.M.; Willauer, H.D.; Broker, G.A.; Rogers, R.D. Characterization and Comparison of Hydrophilic and Hydrophobic Room Temperature Ionic Liquids Incorporating the Imidazolium Cation. Green Chem. 2001, 3, 156–164. [Google Scholar] [CrossRef]
- Postleb, F.; Stefanik, D.; Seifert, H.; Giernoth, R. BIOnic Liquids: Imidazolium-Based Ionic Liquids with Antimicrobial Activity. Z. Nat. BZeitschrift 2013, 68, 1123–1128. [Google Scholar] [CrossRef] [Green Version]
- Richard, A.R.; Adidharma, H. The Performance of Ionic Liquids and Their Mixtures in Inhibiting Methane Hydrate Formation. Chem. Eng. Sci. 2013, 87, 270–276. [Google Scholar] [CrossRef]
- Ignatyev, I.A.; Van Doorslaer, C.; Mertens, P.G.N.; Binnemans, K.; De Vos, D.E. Synthesis of Glucose Esters from Cellulose in Ionic Liquids. Holzforschung 2012, 66, 417–425. [Google Scholar] [CrossRef] [Green Version]
- Ferraz, R.; Teixeira, C.; Gomes, P.; Prudêncio, C. Chapter 16—Bioactivity of Ionic Liquids. In Ionic Liquid Devices; The Royal Society of Chemistry: London, UK, 2017; pp. 404–422. [Google Scholar] [CrossRef]
- Wang, C.; Guo, Y.; Zhu, X.; Cui, G.; Li, H.; Dai, S. Highly Efficient CO2 Capture by Tunable Alkanolamine-Based Ionic Liquids with Multidentate Cation Coordination. Chem. Commun. 2012, 48, 6526. [Google Scholar] [CrossRef] [Green Version]
- Carda–Broch, S.; Berthod, A.; Armstrong, D.W. Solvent Properties of the 1-Butyl-3-Methylimidazolium Hexafluorophosphate Ionic Liquid. Anal. Bioanal. Chem. 2003, 375, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Sanagi, M.M.; Aboul-Enein, H.Y. Advances in Chiral Separations by Nonaqueous Capillary Electrophoresis in Pharmaceutical and Biomedical Analysis. Electrophoresis 2014, 35, 926–936. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Al-Othman, Z.A.; Al-Warthan, A.; Asnin, L.; Chudinov, A. Advances in Chiral Separations of Small Peptides by Capillary Electrophoresis and Chromatography. J. Sep. Sci. 2014, 37, 2447–2466. [Google Scholar] [CrossRef]
- Landers, J.P. Handbook of Capillary Electrophoresis; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Issaq, H.J. Capillary Zone Electrophoresis Electrophoresis Library. J. Chromatogr. A 1994, 675, 286–287. [Google Scholar] [CrossRef]
- Wehr, T.; Rodriguez-Diaz, R.; Zhu, M. (Eds.) Capillary Electrophoresis of Proteins; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar] [CrossRef]
- Khaledi, M.G. High Performance Capillary Electrophoresis; John Wiley Sons, Inc.: New York, NY, USA, 1998; Volume 146, pp. 303–401. [Google Scholar]
- Ahuja, S.; Jimidar, M. Capillary Electrophoresis Methods for Pharmaceutical Analysis; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Stalcup, A.M.; Cabovska, B. Ionic Liquids in Chromatography and Capillary Electrophoresis. J. Liq. Chromatogr. Relat. Technol. 2004, 27, 1443–1459. [Google Scholar] [CrossRef]
- Vaher, M.; Koel, M.; Kaljurand, M. Ionic Liquids as Electrolytes for Nonaqueous Capillary Electrophoresis. Electrophoresis 2002, 23, 426. [Google Scholar] [CrossRef]
- Yanes, E.G.; Gratz, S.R.; Baldwin, M.J.; Robison, S.E.; Stalcup, A.M. Capillary Electrophoretic Application of 1-Alkyl-3-Methylimidazolium-Based Ionic Liquids. Anal. Chem. 2001, 73, 3838–3844. [Google Scholar] [CrossRef]
- Rahman, M.S.; Roy, R.; Jadhav, B.; Hossain, M.N.; Halim, M.A.; Raynie, D.E. Formulation, structure, and applications of therapeutic and amino acid-based deep eutectic solvents: An overview. J. Mol. Liq. 2021, 321, 114745. [Google Scholar] [CrossRef]
- Qi, S.; Cui, S.; Chen, X.; Hu, Z. Rapid and Sensitive Determination of Anthraquinones in Chinese Herb Using 1-Butyl-3-Methylimidazolium-Based Ionic Liquid with β-Cyclodextrin as Modifier in Capillary Zone Electrophoresis. J. Chromatogr. A 2004, 1059, 191–198. [Google Scholar] [CrossRef]
- Chen, X.; Qi, S. The Capillary Electrophoresis Based on Ionic Liquids. Curr. Anal. Chem. 2006, 2, 411–419. [Google Scholar] [CrossRef]
- Jiang, T.-F.; Gu, Y.-L.; Liang, B.; Li, J.-B.; Shi, Y.-P.; Ou, Q.-Y. Dynamically Coating the Capillary with 1-Alkyl-3-Methylimidazolium-Based Ionic Liquids for Separation of Basic Proteins by Capillary Electrophoresis. Anal. Chim. Acta 2003, 479, 249–254. [Google Scholar] [CrossRef]
- Bessonova, E.; Kartsova, L.; Gallyamova, V. Ionic Liquids Based on Imidazole for Online Concentration of Catecholamines in Capillary Electrophoresis. J. Sep. Sci. 2017, 40, 2304–2311. [Google Scholar] [CrossRef]
- Salido-Fortuna, S.; Marina, M.L.; Castro-Puyana, M. Enantiomeric determination of econazole and sulconazole by electrokinetic chromatography using hydroxypropyl-β-cyclodextrin combined with ionic liquids based on L-lysine and L-glutamic acid. J. Chrom. A 2020, 1621, 461085. [Google Scholar] [CrossRef]
- Casado, N.; Salgado, A.; Castro-Puyana, M.; García, M.Á.; Marina, M.L. Enantiomeric separation of ivabradine by cyclodextrin-electrokinetic chromatography. Effect of amino acid chiral ionic liquids. J. Chrom. A 2019, 1608, 460407. [Google Scholar]
- Kunpatee, K.; Traipop, S.; Chailapakul, O.; Chuanuwatanakul, S. Simultaneous determination of ascorbic acid, dopamine, and uric acid using graphene quantum dots/ionic liquid modified screen-printed carbon electrode. Sens. Actuators B Chem. 2020, 314, 128059. [Google Scholar] [CrossRef]
- Greño, M.; Castro-Puyana, M.; Luisa Marina, M. Enantiomeric Separation of Homocysteine And Cysteine By Electrokinetic Chromatography Using Mixtures OF γ-Cyclodextrin And Carnitine-Based Ionic Liquids. Microchem. J. 2020, 157, 105070. [Google Scholar] [CrossRef]
- Qi, Z.; Siru, R.; Song, X.; Ang, L.; Siyao, L.; Xiaodong, S. Enantiomeric separation of ivabradine by cyclodextrin-electrokinetic chromatography. Effect of amino acid chiral ionic liquids. Sep. Purif. Technol. 2021, 256, 117842. [Google Scholar]
- Xu, G.; Du, Y.; Du, F.; Chen, J.; Yu, T.; Zhang, Q.; Zhang, J.; Du, S.; Feng, Z. Establishment and Evaluation of the Novel Tetramethylammonium-L-Hydroxyproline Chiral Ionic Liquid Synergistic System Based on Clindamycin Phosphate for Enantioseparation by Capillary Electrophoresis. Chirality 2015, 27, 598–604. [Google Scholar] [CrossRef]
- Zuo, L.; Meng, H.; Wu, J.; Jiang, Z.; Xu, S.; Guo, X. Combined Use of Ionic Liquid and β-CD for Enantioseparation of 12 Pharmaceuticals Using CE. J. Sep. Sci. 2013, 36, 517–523. [Google Scholar] [CrossRef]
- Yujiao, W.; Guoyan, W.; Wenyan, Z.; Hongfen, Z.; Huanwang, J.; Anjia, C. Chiral Separation of Phenylalanine and Tryptophan by Capillary Electrophoresis Using a Mixture of β-CD and Chiral Ionic Liquid ([TBA] [l-ASP]) as Selectors. Biomed. Chromatogr. 2014, 28, 610–614. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, H.; Wu, Y.; Zhao, W.; Yang, M.; Jing, H.; Chen, A. Combined Use of [TBA][L-ASP] and Hydroxypropyl-β-Cyclodextrin as Selectors for Separation of Cinchona Alkaloids by Capillary Electrophoresis. Anal. Biochem. 2014, 462, 13–18. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, L.; Lin, L.; Ji, P.; Guo, X. Enantioseparation of Rabeprazole and Omeprazole by Nonaqueous Capillary Electrophoresis with an Ephedrine-Based Ionic Liquid as the Chiral Selector. Biomed. Chromatogr. 2010, 24, 1332–1337. [Google Scholar] [CrossRef]
- Tran, C.D.; Mejac, I. Chiral Ionic Liquids for Enantioseparation of Pharmaceutical Products by Capillary Electrophoresis. J. Chromatogr. A 2008, 1204, 204–209. [Google Scholar] [CrossRef]
- Yu, R.B.; Quirino, J.P. Ionic Liquids in Capillary Electrophoresis. In Ionic Liquids in Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2022; pp. 235–274. [Google Scholar] [CrossRef]
- Huang, L.; Lin, J.-M.; Yu, L.; Xu, L.; Chen, G. Improved Simultaneous Enantioseparation of β-Agonists in CE Using β-CD and Ionic Liquids. Electrophoresis 2009, 30, 1030–1036. [Google Scholar] [CrossRef]
- Zhang, Q.; Du, Y.; Du, S.; Zhang, J.; Feng, Z.; Zhang, Y.; Li, X. Tetramethylammonium-Lactobionate: A Novel Ionic Liquid Chiral Selector Based on Saccharides in Capillary Electrophoresis. Electrophoresis 2015, 36, 1216–1223. [Google Scholar] [CrossRef]
- Zhao, M.; Cui, Y.; Yu, J.; Xu, S.; Guo, X. Combined Use of Hydroxypropyl-β-Cyclodextrin and Ionic Liquids for the Simultaneous Enantioseparation of Four Azole Antifungals by CE and a Study of the Synergistic Effect. J. Sep. Sci. 2014, 37, 151–157. [Google Scholar] [CrossRef]
- Tian, Y.; Feng, R.; Liao, L.; Liu, H.; Chen, H.; Zeng, Z. Dynamically Coated Silica Monolith with Ionic Liquids for Capillary Electrochromatography. Electrophoresis 2008, 29, 3153–3159. [Google Scholar] [CrossRef]
- López-Pastor, M.; Simonet, B.M.; Lendl, B.; Valcárcel, M. Ionic Liquids and CE Combination. Electrophoresis 2008, 29, 94–107. [Google Scholar] [CrossRef]
- Yanes, E.G.; Gratz, S.R.; Stalcup, A.M. Tetraethylammonium Tetrafluoroborate: A Novel Electrolyte with a Unique Role in the Capillary Electrophoretic Separation of Polyphenols Found in Grape Seed Extracts. Analyst 2000, 125, 1919–1923. [Google Scholar] [CrossRef]
- Jagadeeswara Rao, C.; Venkatesan, K.A.; Nagarajan, K.; Srinivasan, T.G.; Vasudeva Rao, P.R. Electrodeposition of Metallic Uranium at near Ambient Conditions from Room Temperature Ionic Liquid. J. Nucl. Mater. 2011, 408, 25–29. [Google Scholar] [CrossRef]
- Yue, M.-E.; Shi, Y.-P. Application of 1-Alkyl-3-Methylimidazolium-Based Ionic Liquids in Separation of Bioactive Flavonoids by Capillary Zone Electrophoresis. J. Sep. Sci. 2006, 29, 272–276. [Google Scholar] [CrossRef]
- François, Y.; Varenne, A.; Juillerat, E.; Servais, A.-C.; Chiap, P.; Gareil, P. Nonaqueous Capillary Electrophoretic Behavior of 2-Aryl Propionic Acids in the Presence of an Achiral Ionic Liquid. J. Chromatogr. A 2007, 1138, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Witos, J.; Russo, G.; Ruokonen, S.-K.; Wiedmer, S.K. Unraveling Interactions between Ionic Liquids and Phospholipid Vesicles Using Nanoplasmonic Sensing. Langmuir 2017, 33, 1066–1076. [Google Scholar] [CrossRef]
- Cui, Y.; Ma, X.; Zhao, M.; Jiang, Z.; Xu, S.; Guo, X. Combined Use of Ionic Liquid and Hydroxypropyl-β-Cyclodextrin for the Enantioseparation of Ten Drugs by Capillary Electrophoresis. Chirality 2013, 25, 409–414. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, S.; Feng, Z.; Du, Y.; Yan, Z. Evaluation of Synergistic Enantioseparation Systems with Chiral Spirocyclic Ionic Liquids as Additives by Capillary Electrophoresis. Anal. Bioanal. Chem. 2016, 408, 2543–2555. [Google Scholar] [CrossRef]
- Mavroudi, M.C.; Kapnissi-Christodoulou, C.P. Combined Use of l-Alanine Tert Butyl Ester Lactate and Trimethyl-β-Cyclodextrin for the Enantiomeric Separations of 2-Arylpropionic Acids Nonsteroidal Anti-Inflammatory Drugs. Electrophoresis 2015, 36, 2442–2450. [Google Scholar] [CrossRef]
- Zhang, Q.; Qi, X.; Feng, C.; Tong, S.; Rui, M. Three Chiral Ionic Liquids as Additives for Enantioseparation in Capillary Electrophoresis and Their Comparison with Conventional Modifiers. J. Chromatogr. A 2016, 1462, 146–152. [Google Scholar] [CrossRef]
- François, Y.; Varenne, A.; Juillerat, E.; Villemin, D.; Gareil, P. Evaluation of Chiral Ionic Liquids as Additives to Cyclodextrins for Enantiomeric Separations by Capillary Electrophoresis. J. Chromatogr. A 2007, 1155, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Du, Y.; Zhang, Q.; Chen, J.; Xu, G.; Yu, T.; Hua, X. Investigation of the Synergistic Effect with Amino Acid-Derived Chiral Ionic Liquids as Additives for Enantiomeric Separation in Capillary Electrophoresis. J. Chromatogr. A 2013, 1316, 119–126. [Google Scholar] [CrossRef]
- Wahl, J.; Holzgrabe, U. Capillary Electrophoresis Separation of Phenethylamine Enantiomers Using Amino Acid Based Ionic Liquids. J. Pharm. Biomed. Anal. 2018, 148, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Stavrou, I.J.; Breitbach, Z.S.; Kapnissi-Christodoulou, C.P. Combined Use of Cyclofructans and an Amino Acid Ester-Based Ionic Liquid for the Enantioseparation of Huperzine A and Coumarin Derivatives in CE. Electrophoresis 2015, 36, 3061–3068. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Du, Y. Evaluation of the Enantioselectivity of Glycogen-Based Synergistic System with Amino Acid Chiral Ionic Liquids as Additives in Capillary Electrophoresis. J. Chromatogr. A 2013, 1306, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Du, Y.; Feng, Z.; Liu, Z.; Li, J. Establishment and Molecular Modeling Study of Maltodextrin-Based Synergistic Enantioseparation Systems with Two New Hydroxy Acid Chiral Ionic Liquids as Additives in Capillary Electrophoresis. J. Chromatogr. A 2018, 1559, 170–177. [Google Scholar] [CrossRef]
- Chen, J.; Du, Y.; Sun, X. Investigation of Maltodextrin-Based Synergistic System with Amino Acid Chiral Ionic Liquid as Additive for Enantioseparation in Capillary Electrophoresis. Chirality 2017, 29, 824–835. [Google Scholar] [CrossRef]
- Carda-Broch, S.; García-Alvarez-Coque, M.C.; Ruiz-Angel, M.J. Extent of the Influence of Phosphate Buffer and Ionic Liquids on the Reduction of the Silanol Effect in a C18 Stationary Phase. J. Chromatogr. A 2018, 1559, 112–117. [Google Scholar] [CrossRef]
- Peris-García, E.; García-Alvarez-Coque, M.C.; Carda-Broch, S.; Ruiz-Angel, M.J. Effect of Buffer Nature and Concentration on the Chromatographic Performance of Basic Compounds in the Absence and Presence of 1-Hexyl-3-Methylimidazolium Chloride. J. Chromatogr. A 2019, 1602, 397–408. [Google Scholar] [CrossRef]
- Kiszkiel, I.; Starczewska, B.; Leśniewska, B.; Późniak, P. Extraction of Ranitidine and Nizatidine with Using Imidazolium Ionic Liquids Prior Spectrophotometric and Chromatographic Detection. J. Pharm. Biomed. Anal. 2015, 106, 85–91. [Google Scholar] [CrossRef]
- Zhang, Q. Ionic Liquids in Capillary Electrophoresis for Enantioseparation. TrAC Trends Anal. Chem. 2018, 100, 145–154. [Google Scholar] [CrossRef]
- Holzgrabe, U.; Wahl, J. Ionic Liquids in Capillary Electrophoresis; Humana Press: New York, NY, USA, 2016; pp. 131–153. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Zhang, S.; Pei, Y.; Zhuo, K. Ionic Association of the Ionic Liquids [C4Mim][BF4], [C4Mim][PF6], and [CnMim]Br in Molecular Solvents. ChemPhysChem 2009, 10, 2516–2523. [Google Scholar] [CrossRef]
- Yee, P.; Shah, J.K.; Maginn, E.J. State of Hydrophobic and Hydrophilic Ionic Liquids in Aqueous Solutions: Are the Ions Fully Dissociated? J. Phys. Chem. B 2013, 117, 12556–12566. [Google Scholar] [CrossRef]
- Shekaari, H.; Mousavi, S.S. Conductometric Studies of Aqueous Ionic Liquids, 1-Alkyl-3-Methylimidazolium Halide, Solutions at T = 298.15–328.15 K. Fluid Phase Equilib. 2009, 286, 120–126. [Google Scholar] [CrossRef]
- Katsuta, S.; Imai, K.; Kudo, Y.; Takeda, Y.; Seki, H.; Nakakoshi, M. Ion Pair Formation of Alkylimidazolium Ionic Liquids in Dichloromethane. J. Chem. Eng. Data 2008, 53, 1528–1532. [Google Scholar] [CrossRef]
- Schmid, M.G.; Gübitz, G. Enantioseparation by Chromatographic and Electromigration Techniques Using Ligand-Exchange as Chiral Separation Principle. Anal. Bioanal. Chem. 2011, 400, 2305–2316. [Google Scholar] [CrossRef]
- Quijano, G.; Couvert, A.; Amrane, A. Ionic Liquids: Applications and Future Trends in Bioreactor Technology. Bioresour. Technol. 2010, 101, 8923–8930. [Google Scholar] [CrossRef]
- Thuy Pham, T.P.; Cho, C.-W.; Yun, Y.-S. Environmental Fate and Toxicity of Ionic Liquids: A Review. Water Res. 2010, 44, 352–372. [Google Scholar] [CrossRef]
- Azimova, M.A.; Morton, S.A.; Frymier, P.D. Comparison of Three Bacterial Toxicity Assays for Imidazolium-Derived Ionic Liquids. J. Environ. Eng. 2009, 135, 1388–1392. [Google Scholar] [CrossRef]
- Docherty, K.M.; Kulpa, C.F., Jr. Toxicity and Antimicrobial Activity of Imidazolium and Pyridinium Ionic Liquids. Green Chem. 2005, 7, 185. [Google Scholar] [CrossRef]
- Lee, S.-M.; Chang, W.-J.; Choi, A.-R.; Koo, Y.-M. Influence of Ionic Liquids on the Growth of Escherichia Coli. Korean J. Chem. Eng. 2005, 22, 687–690. [Google Scholar] [CrossRef]
- Sendovski, M.; Nir, N.; Fishman, A. Bioproduction of 2-Phenylethanol in a Biphasic Ionic Liquid Aqueous System. J. Agric. Food Chem. 2010, 58, 2260–2265. [Google Scholar] [CrossRef]
- Ali, I.; Jain, C.K. Groundwater contamination and health hazards by some of the most commonly used pesticides. Curr. Sci. 1998, 75, 1011–1014. [Google Scholar]
- Saleem, K.; Wani, W.A.; Haque, A.; Lone, M.N.; Hsieh, M.F.; Jairajpuri, M.A.; Ali, I. Synthesis, DNA binding, hemolysis assays and anticancer studies of copper(II), nickel(II) and iron(III) complexes of a pyrazoline based ligand. Future Med. Chem. 2013, 5, 135–146. [Google Scholar] [CrossRef]
- Ali, I.; Aboul-Enein, H.Y.; Ghanem, A. Enantioselective toxicities and carcinogenesis. Curr. Pharm. Anal. 2005, 1, 109–125. [Google Scholar] [CrossRef]
- Ali, I.; Gupta, V.K.; Aboul-Enein, H.Y. Chirality: A challenge to the environmental scientists. Curr. Sci. 2003, 84, 152–156. [Google Scholar]
Class | Compounds Separated | ILs/BGEs Used | Refs. |
---|---|---|---|
Phytochemicals | Polyphenols | 1E-3MI-TFB | [25] |
Anthraquinones | 1B-3MI-TFB | [26] | |
Eastside, cinnamic acid, and ferulic acid | 1B-3MI-TFB | [27] | |
Proteins | 1A-3MI | [28] | |
Pharmaceutical drugs | Catecholamines | 1-dodecyl-3-methylimidazolium chloride and 1-cetyl-3-methylimidazolium chloride | [29] |
Racemates | Brompheniramine, chlorphenamine, dioxopromethazine, zopiclone, repaglinide, etc. | [EMIM][L-lactate] (1-ethyl-3-methylimidazolium-L-lactate) | [36] |
Citalopram, chlorphenamine, propranolol, nefopam | [TMA-L-Hyp] (tetramethylammonium-L-hydroxyproline) | [35] | |
DL-tryptophan, DL-phenylalanine | [TBA-L-Asp] (tetrabutylammonium-L-aspartic acid) | [37] | |
Quinidine, cinchonidine, cinchonine, quinine | [TBA-L-Asp] (tetrabutylammonium-L-aspartic acid) | [38] | |
Omeprazole and rabeprazole | Ephedrine-based IL | [39] | |
Indoprofen propranol, atenolol, ketoprofen, warfarin, flurbiprofen and ibuprofen] | S-(CHTA)+ (Tf2N)− | [40] | |
Furbiprofen | 1-S-octyl-b-D-thioglucopyranoside (OTG) | [45] | |
Flavonoid extracts | (Cnmim)+ | [49] | |
Carprofen, suprofen, ketoprofen and naproxen | (C4mim) (NTf2) | [50] | |
Propranolol, ofloxacin, liarozole, dioxopromethazine, chlorpheniramine, isoprenaline, etc. | 1-ethyl-3-methylimidazolium-L-lactate ([EMIM][L-lactate]) | [52] | |
Duloxetine, amlodipine, propranolol, nefopam, tropicamide | 1-butyl-3-methylimidazolium(T-4)- bis[(aS)-a-(hydroxy-kO)- 4-methyl-benzeneacetato-kO]borate (BMImBSMB_); 1-butyl-3-methylimidazolium(T-4)-bis[(2S)-2-(hydroxykO)-3-methyl-butanoato-kO]borate (BMImBLHvB) | [53] | |
Ibuprofen, indoprofen, naproxen, ketoprofen, fenoprofen, carprofen, flurbiprofen | L-alanine tert butyl ester lactate (L-AlaC4Lac) | [54] | |
Nefopam, amlodipine, propranolol, duloxetine | [TMA-L-Hyp] (tetramethylammonium-L-hydroxyproline) [TMA-L-Ile] (tetramethylammonium-L-isoleucine); [TMA-L-Arg] (tetramethylammonium-L-arginine) | [55] | |
Carprofen, ketoprofen, suprofen, naproxen, ibuprofen, indoprofen | Phenylcholinebis (trifluoromethylsulfonyl); imide Ethyl-bis(trifluoromethylsulfonyl)imide | [56] | |
Warfarin, pranoprofen, naproxen | [L-AlaC4NTf2] (L-alanine tert butyl ester bis (trifluoromethane)sulfonamide; [L-ValC4NTf2] (L-valine tert butyl ester bis (trifluoromethane) sulfonamide) | [57] | |
Ephedrine, methylephedrine, pseudoephedrine | [TBA-L-Arg] (tetrabutylammonium-L-arginine). | [58] | |
Coumachlor, huperzine A, warfarin | [D-AlaC4Lac] (D-Alanine tert butyl ester lactate) | [59] | |
Nefopam, duloxetine, citalopram | [TMA-L-Arg] (tetramethylammonium-L-arginine); [TMA-L-Asp] (tetramethylammonium-L-aspartic acid) | [60] | |
Econazole, ketoconazole, nefopam, voriconazole | [TMA-D-QUI] (tertramethylammonium-D-quinate); [TMA-D-PAN] (tertramethylammonium-D-pantothenate) | [61] | |
Duloxetine, nefopam, cetirizine, citalopram, ketoconazole | [TMA-L-Asp] (tetramethylammonium-L-aspartic acid); [TMA-L-Arg] (tetramethylammonium-L-arginine) | [62] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, I.; Suhail, M.; Locatelli, M.; Ali, S.; Y. Aboul-Enein, H. Role of Ionic Liquids in Capillary Electrophoresis. Analytica 2022, 3, 236-250. https://doi.org/10.3390/analytica3020017
Ali I, Suhail M, Locatelli M, Ali S, Y. Aboul-Enein H. Role of Ionic Liquids in Capillary Electrophoresis. Analytica. 2022; 3(2):236-250. https://doi.org/10.3390/analytica3020017
Chicago/Turabian StyleAli, Imran, Mohammad Suhail, Marcello Locatelli, Salim Ali, and Hassan Y. Aboul-Enein. 2022. "Role of Ionic Liquids in Capillary Electrophoresis" Analytica 3, no. 2: 236-250. https://doi.org/10.3390/analytica3020017
APA StyleAli, I., Suhail, M., Locatelli, M., Ali, S., & Y. Aboul-Enein, H. (2022). Role of Ionic Liquids in Capillary Electrophoresis. Analytica, 3(2), 236-250. https://doi.org/10.3390/analytica3020017