Optimization of Pulsed Electric Field-Based Extraction of Bioactive Compounds from Cannabis sativa Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Materials, and Reagents
2.2. Hemp Leaf Material
2.3. Extraction Procedure
2.4. Optimization with Response Surface Methodology (RSM) and Experimental Design
2.5. Total Polyphenol Content (TPC)
2.6. Ferric-Reducing Antioxidant Power (FRAP) Assay
2.7. DPPH• Antiradical Activity Assay
2.8. HPLC Quantification of Polyphenolic Compounds
2.9. Statistical Analysis
3. Results and Discussion
3.1. Determination of the Appropriate Solvent Concentration and Liquid-to-Solid Ratio
3.2. Optimization of PEF Conditions
3.3. Principal Component Analysis (PCA) and Multivariate Correlation Analysis (MCA)
3.4. Partial Least Squares (PLS) Analysis and Variable Importance Plot (VIP) Coefficient
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ranjha, M.M.A.N.; Kanwal, R.; Shafique, B.; Arshad, R.N.; Irfan, S.; Kieliszek, M.; Kowalczewski, P.Ł.; Irfan, M.; Khalid, M.Z.; Roobab, U.; et al. A Critical Review on Pulsed Electric Field: A Novel Technology for the Extraction of Phytoconstituents. Molecules 2021, 26, 4893. [Google Scholar] [CrossRef]
- Mohamad, A.; Shah, N.N.A.K.; Sulaiman, A.; Mohd Adzahan, N.; Aadil, R.M. Impact of the Pulsed Electric Field on Physicochemical Properties, Fatty Acid Profiling, and Metal Migration of Goat Milk. J. Food Process. Preserv. 2020, 44, e14940. [Google Scholar] [CrossRef]
- Lakka, A.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Evaluation of Pulsed Electric Field Polyphenol Extraction from Vitis vinifera, Sideritis scardica and Crocus sativus. ChemEngineering 2021, 5, 25. [Google Scholar] [CrossRef]
- Bansal, V.; Sharma, A.; Ghanshyam, C.; Singla, M.L.; Kim, K.-H. Influence of Pulsed Electric Field and Heat Treatment on Emblica officinalis Juice Inoculated with Zygosaccharomyces bailii. Food Bioprod. Process. 2015, 95, 146–154. [Google Scholar] [CrossRef]
- Chatzimitakos, T.; Athanasiadis, V.; Kalompatsios, D.; Mantiniotou, M.; Bozinou, E.; Lalas, S.I. Pulsed Electric Field Applications for the Extraction of Bioactive Compounds from Food Waste and By-Products: A Critical Review. Biomass 2023, 3, 367–401. [Google Scholar] [CrossRef]
- Martí-Quijal, F.J.; Ramon-Mascarell, F.; Pallarés, N.; Ferrer, E.; Berrada, H.; Phimolsiripol, Y.; Barba, F.J. Extraction of Antioxidant Compounds and Pigments from Spirulina (Arthrospira platensis) Assisted by Pulsed Electric Fields and the Binary Mixture of Organic Solvents and Water. Appl. Sci. 2021, 11, 7629. [Google Scholar] [CrossRef]
- Tzima, K.; Brunton, N.P.; Lyng, J.G.; Frontuto, D.; Rai, D.K. The Effect of Pulsed Electric Field as a Pre-Treatment Step in Ultrasound Assisted Extraction of Phenolic Compounds from Fresh Rosemary and Thyme by-Products. Innov. Food Sci. Emerg. Technol. 2021, 69, 102644. [Google Scholar] [CrossRef]
- Bozinou, E.; Karageorgou, I.; Batra, G.; Dourtoglou, V.G.; Lalas, I.S. Pulsed Electric Field Extraction and Antioxidant Activity Determination of Moringa oleifera Dry Leaves: A Comparative Study with Other Extraction Techniques. Beverages 2019, 5, 8. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Review of Green Food Processing Techniques. Preservation, Transformation, and Extraction. Innov. Food Sci. Emerg. Technol. 2017, 41, 357–377. [Google Scholar] [CrossRef]
- Jha, A.K.; Sit, N. Extraction of Bioactive Compounds from Plant Materials Using Combination of Various Novel Methods: A Review. Trends Food Sci. Technol. 2022, 119, 579–591. [Google Scholar] [CrossRef]
- Baiano, A. Recovery of Biomolecules from Food Wastes—A Review. Molecules 2014, 19, 14821–14842. [Google Scholar] [CrossRef]
- Arshad, R.N.; Abdul-Malek, Z.; Roobab, U.; Qureshi, M.I.; Khan, N.; Ahmad, M.H.; Liu, Z.-W.; Aadil, R.M. Effective Valorization of Food Wastes and By-Products through Pulsed Electric Field: A Systematic Review. J. Food Process Eng. 2021, 44, e13629. [Google Scholar] [CrossRef]
- Kempkes, M.A. Industrial Pulsed Electric Field Systems. In Handbook of Electroporation; Miklavcic, D., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–21. ISBN 978-3-319-26779-1. [Google Scholar]
- Sarraf, M.; Beig-babaei, A.; Naji-Tabasi, S. Optimizing Extraction of Berberine and Antioxidant Compounds from Barberry by Maceration and Pulsed Electric Field-Assisted Methods. JBR 2021, 11, 133–149. [Google Scholar] [CrossRef]
- Ziagova, M.G.; Mavromatidou, C.; Samiotis, G.; Amanatidou, E. Total Phenolic Content and Antioxidant Capacity of Greek Medicinal and Aromatic Plant Extracts Using Pulsed Electric Field Followed by Ultrasounds Extraction Process. Food Process. Preserv. 2022, 46, e16639. [Google Scholar] [CrossRef]
- Mahalleh, A.A.; Sharayei, P.; Mortazavi, S.A.; Azarpazhooh, E.; Niazmand, R. Optimization of the Pulsed Electric Field -Assisted Extraction of Functional Compounds from Nepeta binaludensis. Agric. Eng. Int. CIGR J. 2019, 21, 184–194. [Google Scholar]
- Sadasivam, P.; Varadarajan, G.; Sundararajan, R. Effect of Pulsed Electric Field on Alkaloids of Vinca rosea Root. Arch. Diabetes Endocr. Syst. 2018, 1, 4–8. [Google Scholar] [CrossRef]
- Barba, F.J.; Parniakov, O.; Pereira, S.A.; Wiktor, A.; Grimi, N.; Boussetta, N.; Saraiva, J.A.; Raso, J.; Martin-Belloso, O.; Witrowa-Rajchert, D.; et al. Current Applications and New Opportunities for the Use of Pulsed Electric Fields in Food Science and Industry. Food Res. Int. 2015, 77, 773–798. [Google Scholar] [CrossRef]
- Poojary, M.M.; Lund, M.N.; Barba, F.J. Pulsed Elextric Field (PEF) Is an Efficient Technology for Food Additives and Nutraceuticals Development. In Pulsed Electric Fields to Obtain Healthier and Sustainable Food for Tomorrow; Academic Press: Cambridge, MA, USA, 2020; pp. 65–99. ISBN 978-0-12-817264-3. [Google Scholar]
- Russo, E.B.; Jiang, H.-E.; Li, X.; Sutton, A.; Carboni, A.; del Bianco, F.; Mandolino, G.; Potter, D.J.; Zhao, Y.-X.; Bera, S.; et al. History of Cannabis and Its Preparations in Saga, Science, and Sobriquet. Chem. Biodivers. 2007, 4, 1614–1648. [Google Scholar] [CrossRef]
- Bonini, S.A.; Premoli, M.; Tambaro, S.; Kumar, A.; Maccarinelli, G.; Memo, M.; Mastinu, A. Cannabis sativa: A Comprehensive Ethnopharmacological Review of a Medicinal Plant with a Long History. J. Ethnopharmacol. 2018, 227, 300–315. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.B.; Jiang, H.-E.; Li, X.; Sutton, A.; Carboni, A.; del Bianco, F.; Mandolino, G.; Potter, D.J.; Zhao, Y.-X.; Bera, S.; et al. Phytochemical and Genetic Analyses of Ancient Cannabis from Central Asia. J. Exp. Bot. 2008, 59, 4171–4182. [Google Scholar] [CrossRef]
- Andre, C.M.; Hausman, J.-F.; Guerriero, G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef]
- Bernstein, N.; Gorelick, J.; Koch, S. Interplay between Chemistry and Morphology in Medical Cannabis (Cannabis sativa L.). Ind. Crops Prod. 2019, 129, 185–194. [Google Scholar] [CrossRef]
- Malabadi, R.B.; Kolkar, K.P.; Chalannavar, R.K. Δ9-Tetrahydrocannabinol (THC): The Major Psychoactive Component Is of Botanical Origin. Int. J. Innov. Sci. Res. Rev. 2023, 5, 4177–4184. [Google Scholar]
- Mechoulam, R.; Peters, M.; Murillo-Rodriguez, E.; Hanuš, L.O. Cannabidiol—Recent Advances. Chem. Biodivers. 2007, 4, 1678–1692. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xue, F.; Adhikari, B. Production of Hemp Protein Isolate-Polyphenol Conjugates through Ultrasound and Alkali Treatment Methods and Their Characterization. Future Foods 2023, 7, 100210. [Google Scholar] [CrossRef]
- Pannico, A.; Kyriacou, M.C.; El-Nakhel, C.; Graziani, G.; Carillo, P.; Corrado, G.; Ritieni, A.; Rouphael, Y.; De Pascale, S. Hemp Microgreens as an Innovative Functional Food: Variation in the Organic Acids, Amino Acids, Polyphenols, and Cannabinoids Composition of Six Hemp Cultivars. Food Res. Int. 2022, 161, 111863. [Google Scholar] [CrossRef] [PubMed]
- Mourtzinos, I.; Menexis, N.; Iakovidis, D.; Makris, D.P.; Goula, A. A Green Extraction Process to Recover Polyphenols from Byproducts of Hemp Oil Processing. Recycling 2018, 3, 15. [Google Scholar] [CrossRef]
- Kubilienė, A.; Marksa, M.; Baranauskaitė, J.; Ragažinskienė, O.; Ivanauskas, L. Comparative Evaluation of Antioxidant Activity of Cannabis sativa L. Using FRAP and CUPRAP Assays. Chemija 2020, 31, 156–161. [Google Scholar] [CrossRef]
- Smeriglio, A.; Galati, E.M.; Monforte, M.T.; Lanuzza, F.; D’Angelo, V.; Circosta, C. Polyphenolic Compounds and Antioxidant Activity of Cold-Pressed Seed Oil from Finola Cultivar of Cannabis sativa L. Phytother. Res. 2016, 30, 1298–1307. [Google Scholar] [CrossRef] [PubMed]
- Chatzimitakos, T.; Athanasiadis, V.; Makrygiannis, I.; Kalompatsios, D.; Bozinou, E.; Lalas, S.I. An Investigation into Crithmum maritimum L. Leaves as a Source of Antioxidant Polyphenols. Compounds 2023, 3, 532–551. [Google Scholar] [CrossRef]
- Shehata, E.; Grigorakis, S.; Loupassaki, S.; Makris, D.P. Extraction Optimisation Using Water/Glycerol for the Efficient Recovery of Polyphenolic Antioxidants from Two Artemisia Species. Sep. Purif. Technol. 2015, 149, 462–469. [Google Scholar] [CrossRef]
- Tsai, Y.-J.; Chen, B.-H. Preparation of Catechin Extracts and Nanoemulsions from Green Tea Leaf Waste and Their Inhibition Effect on Prostate Cancer Cell PC-3. Int. J. Nanomed. 2016, 11, 1907–1926. [Google Scholar] [CrossRef]
- André, A.; Leupin, M.; Kneubühl, M.; Pedan, V.; Chetschik, I. Evolution of the Polyphenol and Terpene Content, Antioxidant Activity and Plant Morphology of Eight Different Fiber-Type Cultivars of Cannabis sativa L. Cultivated at Three Sowing Densities. Plants 2020, 9, 1740. [Google Scholar] [CrossRef] [PubMed]
- Izzo, L.; Castaldo, L.; Narváez, A.; Graziani, G.; Gaspari, A.; Rodríguez-Carrasco, Y.; Ritieni, A. Analysis of Phenolic Compounds in Commercial Cannabis sativa L. Inflorescences Using UHPLC-Q-Orbitrap HRMS. Molecules 2020, 25, 631. [Google Scholar] [CrossRef] [PubMed]
- Aazza, S. Application of Multivariate Optimization for Phenolic Compounds and Antioxidants Extraction from Moroccan Cannabis sativa Waste. J. Chem. 2021, 2021, e9738656. [Google Scholar] [CrossRef]
- Agarwal, C.; Máthé, K.; Hofmann, T.; Csóka, L. Ultrasound-Assisted Extraction of Cannabinoids from Cannabis sativa L. Optimized by Response Surface Methodology. J. Food Sci. 2018, 83, 700–710. [Google Scholar] [CrossRef] [PubMed]
- Babiker, E.E.; Uslu, N.; Al Juhaimi, F.; Mohamed Ahmed, I.A.; Ghafoor, K.; Özcan, M.M.; Almusallam, I.A. Effect of Roasting on Antioxidative Properties, Polyphenol Profile and Fatty Acids Composition of Hemp (Cannabis sativa L.) Seeds. LWT 2021, 139, 110537. [Google Scholar] [CrossRef]
- Han, S.K.; Kim, Y.G.; Kang, H.C.; Huh, J.R.; Kim, J.Y.; Baek, N.-I.; Lee, D.-K.; Lee, D.-G. Oleanolic Acid from Fragaria ananassa Calyx Leads to Inhibition of α-MSH-Induced Melanogenesis in B16-F10 Melanoma Cells. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 735–742. [Google Scholar] [CrossRef]
- Kowalski, R. Studies of Selected Plant Raw Materials as Alternative Sources of Triterpenes of Oleanolic and Ursolic Acid Types. J. Agric. Food Chem. 2007, 55, 656–662. [Google Scholar] [CrossRef]
- Kashyap, D.; Tuli, H.S.; Sharma, A.K. Ursolic Acid (UA): A Metabolite with Promising Therapeutic Potential. Life Sci. 2016, 146, 201–213. [Google Scholar] [CrossRef]
- Wójciak-Kosior, M.; Sowa, I.; Kocjan, R.; Nowak, R. Effect of Different Extraction Techniques on Quantification of Oleanolic and Ursolic Acid in Lamii Albi Flos. Ind. Crops Prod. 2013, 44, 373–377. [Google Scholar] [CrossRef]
- Kunkel, S.D.; Elmore, C.J.; Bongers, K.S.; Ebert, S.M.; Fox, D.K.; Dyle, M.C.; Bullard, S.A.; Adams, C.M. Ursolic Acid Increases Skeletal Muscle and Brown Fat and Decreases Diet-Induced Obesity, Glucose Intolerance and Fatty Liver Disease. PLoS ONE 2012, 7, e39332. [Google Scholar] [CrossRef]
- Close, G.L.; Hamilton, D.L.; Philp, A.; Burke, L.M.; Morton, J.P. New Strategies in Sport Nutrition to Increase Exercise Performance. Free Radic. Biol. Med. 2016, 98, 144–158. [Google Scholar] [CrossRef] [PubMed]
- Deane, C.S.; Wilkinson, D.J.; Phillips, B.E.; Smith, K.; Etheridge, T.; Atherton, P.J. “Nutraceuticals” in Relation to Human Skeletal Muscle and Exercise. Am. J. Physiol.-Endocrinol. Metab. 2017, 312, E282–E299. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, M.M.; Bou-Chacra, N.A.; de Castro Lima, C.R.R.; do Rosário Matos, J.; Filho, E.M.; Mercuri, L.P.; Baby, A.R.; Kaneko, T.M.; Velasco, M.V.R. Characterization and Evaluation of Free and Nanostructured Ursolic Acid Incorporated in Cosmetic Formulation Using Thermal Analysis. J. Therm. Anal. Calorim. 2014, 115, 2401–2406. [Google Scholar] [CrossRef]
- Navina, R.; Lee, Y.G.; Kim, S.M. Molecular Biological Roles of Ursolic Acid in the Treatment of Human Diseases. Curr. Bioact. Compd. 2017, 13, 177–185. [Google Scholar] [CrossRef]
Independent Variables | Code Units | Coded Variable Level | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
Solvent concentration (C %, v/v) | X1 | 0 | 25 | 50 | 75 | 100 |
Liquid-to-solid ratio (R, mL/g) | X2 | 10 | 20 | 30 | 40 | 50 |
Design Point | Independent Variables | Response TPC (mg GAE/g) | ||
---|---|---|---|---|
X1 (C %, v/v) | X2 (R, mL/g) | Actual | Predicted | |
1 | 1 (0) | 2 (20) | 9.45 | 8.45 |
2 | 2 (25) | 2 (20) | 10.33 | 10.17 |
3 | 3 (50) | 3 (30) | 12.85 | 13.16 |
4 | 4 (75) | 4 (40) | 14.00 | 13.49 |
5 | 5 (100) | 4 (40) | 6.19 | 6.04 |
6 | 1 (0) | 1 (10) | 2.95 | 4.54 |
7 | 2 (25) | 1 (10) | 4.20 | 2.96 |
8 | 3 (50) | 5 (50) | 13.88 | 14.21 |
9 | 4 (75) | 3 (30) | 6.61 | 7.67 |
10 | 5 (100) | 5 (50) | 11.39 | 11.16 |
Independent Variables | Code Units | Coded Variable Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Electric field strength (E, kV/cm) | X1 | 0.6 | 0.8 | 1.0 |
Pulse duration (tpulse, μs) | X2 | 10 | 55 | 100 |
Pulse period (T, μs) | X3 | 100 | 550 | 1000 |
Extraction duration (t, min) | X4 | 10 | 20 | 30 |
Design Point | Independent Variables | Responses | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
TPC (mg GAE/g dw) | FRAP (μmol AAE/g) | DPPH (μmol AAE/g) | ||||||||
X1 (E, kV/cm) | X2 (tpulse, μs) | X3 (T, μs) | X4 (t, min) | Actual | Predicted | Actual | Predicted | Actual | Predicted | |
1 | −1 (0.6) | −1 (10) | 0 (550) | 0 (20) | 11.58 | 11.60 | 69.47 | 67.78 | 16.45 | 16.89 |
2 | −1 (0.6) | 1 (100) | 0 (550) | 0 (20) | 11.90 | 11.52 | 69.17 | 68.31 | 11.29 | 11.58 |
3 | 1 (1.0) | −1 (10) | 0 (550) | 0 (20) | 13.39 | 14.11 | 75.71 | 74.26 | 11.48 | 11.40 |
4 | 1 (1.0) | 1 (100) | 0 (550) | 0 (20) | 11.72 | 12.04 | 67.10 | 66.49 | 20.12 | 19.89 |
5 | 0 (0.8) | 0 (55) | −1 (100) | −1 (10) | 14.57 | 14.81 | 88.82 | 86.69 | 20.55 | 20.78 |
6 | 0 (0.8) | 0 (55) | −1 (100) | 1 (30) | 12.48 | 12.76 | 69.37 | 66.46 | 11.45 | 11.04 |
7 | 0 (0.8) | 0 (55) | 1 (1000) | −1 (10) | 14.61 | 14.67 | 69.38 | 69.98 | 11.12 | 11.74 |
8 | 0 (0.8) | 0 (55) | 1 (1000) | 1 (30) | 14.98 | 15.08 | 84.91 | 84.73 | 22.87 | 22.85 |
9 | −1 (0.6) | 0 (55) | 0 (550) | −1 (10) | 10.29 | 10.55 | 67.58 | 67.60 | 10.62 | 10.51 |
10 | −1 (0.6) | 0 (55) | 0 (550) | 1 (30) | 12.48 | 12.82 | 59.89 | 60.87 | 8.29 | 8.30 |
11 | 1 (1.0) | 0 (55) | 0 (550) | −1 (10) | 15.82 | 15.16 | 65.81 | 65.94 | 10.63 | 9.03 |
12 | 1 (1.0) | 0 (55) | 0 (550) | 1 (30) | 11.83 | 11.24 | 66.09 | 67.19 | 14.08 | 12.61 |
13 | 0 (0.8) | −1 (10) | −1 (100) | 0 (20) | 13.76 | 13.90 | 75.03 | 78.85 | 21.48 | 21.17 |
14 | 0 (0.8) | −1 (10) | 1 (1000) | 0 (20) | 15.59 | 15.58 | 87.53 | 86.33 | 21.47 | 20.09 |
15 | 0 (0.8) | 1 (100) | −1 (100) | 0 (20) | 13.73 | 13.41 | 79.62 | 81.93 | 20.50 | 20.30 |
16 | 0 (0.8) | 1 (100) | 1 (1000) | 0 (20) | 14.38 | 13.91 | 78.72 | 76.01 | 25.41 | 24.14 |
17 | −1 (0.6) | 0 (55) | −1 (100) | 0 (20) | 13.25 | 12.96 | 68.04 | 67.67 | 19.72 | 19.07 |
18 | −1 (0.6) | 0 (55) | 1 (1000) | 0 (20) | 11.67 | 11.71 | 61.71 | 63.63 | 12.47 | 12.50 |
19 | 1 (1.0) | 0 (55) | −1 (100) | 0 (20) | 12.19 | 12.13 | 65.90 | 65.17 | 11.18 | 12.53 |
20 | 1 (1.0) | 0 (55) | 1 (1000) | 0 (20) | 15.29 | 15.56 | 69.22 | 70.78 | 19.83 | 21.86 |
21 | 0 (0.8) | −1 (10) | 0 (550) | −1 (10) | 15.03 | 14.65 | 84.02 | 84.37 | 16.87 | 17.28 |
22 | 0 (0.8) | −1 (10) | 0 (550) | 1 (30) | 14.05 | 13.55 | 77.82 | 77.99 | 10.30 | 11.23 |
23 | 0 (0.8) | 1 (100) | 0 (550) | −1 (10) | 12.81 | 13.29 | 76.08 | 77.11 | 11.69 | 12.14 |
24 | 0 (0.8) | 1 (100) | 0 (550) | 1 (30) | 12.38 | 12.74 | 77.17 | 78.01 | 18.59 | 19.56 |
25 | 0 (0.8) | 0 (55) | 0 (550) | 0 (20) | 11.56 | 11.61 | 54.38 | 55.32 | 15.93 | 16.06 |
26 | 0 (0.8) | 0 (55) | 0 (550) | 0 (20) | 11.76 | 11.61 | 55.90 | 55.32 | 16.02 | 16.06 |
27 | 0 (0.8) | 0 (55) | 0 (550) | 0 (20) | 11.52 | 11.61 | 55.68 | 55.32 | 16.22 | 16.06 |
Design Point | Independent Variables | Responses | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 (E, kV/cm) | X2 (tpulse, μs) | X3 (T, μs) | X4 (t, min) | NCA | PEL | CA | CGA | ERC | RT | A7G | ULA | |
1 | −1 (0.6) | −1 (10) | 0 (550) | 0 (20) | 0.02 | 1.05 | 0.08 | 0.20 | 0.22 | 0.40 | 0.39 | 4.96 |
2 | −1 (0.6) | 1 (100) | 0 (550) | 0 (20) | 0.03 | 1.29 | 0.06 | 0.21 | 0.36 | 0.39 | 0.50 | 4.66 |
3 | 1 (1.0) | −1 (10) | 0 (550) | 0 (20) | 0.01 | 1.12 | 0.08 | 0.21 | 0.20 | 0.62 | 0.38 | 4.58 |
4 | 1 (1.0) | 1 (100) | 0 (550) | 0 (20) | 0.02 | 1.21 | 0.06 | 0.20 | 0.21 | 0.39 | 0.40 | 5.28 |
5 | 0 (0.8) | 0 (55) | −1 (100) | −1 (10) | 0.04 | 1.42 | 0.06 | 0.21 | 0.39 | 0.42 | 0.60 | 4.46 |
6 | 0 (0.8) | 0 (55) | −1 (100) | 1 (30) | 0.03 | 1.45 | 0.06 | 0.21 | 0.42 | 0.41 | 0.57 | 4.80 |
7 | 0 (0.8) | 0 (55) | 1 (1000) | −1 (10) | 0.03 | 1.27 | 0.30 | 0.20 | 0.26 | 0.37 | 0.40 | 4.72 |
8 | 0 (0.8) | 0 (55) | 1 (1000) | 1 (30) | 0.04 | 1.31 | 0.05 | 0.21 | 0.42 | 0.40 | 0.53 | 5.90 |
9 | −1 (0.6) | 0 (55) | 0 (550) | −1 (10) | 0.02 | 1.22 | 0.05 | 0.21 | 0.28 | 0.39 | 0.43 | 5.79 |
10 | −1 (0.6) | 0 (55) | 0 (550) | 1 (30) | 0.02 | 1.07 | 0.07 | 0.20 | 0.18 | 0.37 | 0.35 | 5.73 |
11 | 1 (1.0) | 0 (55) | 0 (550) | −1 (10) | 0.01 | 0.92 | 0.24 | 0.21 | 0.33 | 0.33 | 0.45 | 1.20 |
12 | 1 (1.0) | 0 (55) | 0 (550) | 1 (30) | 0.03 | 1.17 | 0.08 | 0.20 | 0.31 | 0.40 | 0.43 | 4.19 |
13 | 0 (0.8) | −1 (10) | −1 (100) | 0 (20) | 0.03 | 1.37 | 0.18 | 0.19 | 0.52 | 0.43 | 0.64 | 2.34 |
14 | 0 (0.8) | −1 (10) | 1 (1000) | 0 (20) | 0.03 | 1.23 | 0.10 | 0.21 | 0.36 | 0.41 | 0.55 | 2.79 |
15 | 0 (0.8) | 1 (100) | −1 (100) | 0 (20) | 0.03 | 1.27 | 0.06 | 0.20 | 0.33 | 0.41 | 0.46 | 2.58 |
16 | 0 (0.8) | 1 (100) | 1 (1000) | 0 (20) | 0.03 | 1.19 | 0.14 | 0.21 | 0.44 | 0.42 | 0.56 | 3.03 |
17 | −1 (0.6) | 0 (55) | −1 (100) | 0 (20) | nd * | 1.26 | 0.08 | 0.20 | 0.24 | 0.39 | 0.44 | 2.41 |
18 | −1 (0.6) | 0 (55) | 1 (1000) | 0 (20) | 0.02 | 1.08 | 0.08 | 0.20 | 0.11 | 0.37 | 0.30 | 2.37 |
19 | 1 (1.0) | 0 (55) | −1 (100) | 0 (20) | 0.02 | 1.19 | 0.05 | 0.20 | 0.23 | 0.39 | 0.35 | 2.73 |
20 | 1 (1.0) | 0 (55) | 1 (1000) | 0 (20) | nd | 1.20 | 0.11 | 0.20 | 0.24 | 0.37 | 0.33 | 2.72 |
21 | 0 (0.8) | −1 (10) | 0 (550) | −1 (10) | nd | 1.22 | 0.04 | 0.20 | 0.31 | 0.39 | 0.04 | 2.74 |
22 | 0 (0.8) | −1 (10) | 0 (550) | 1 (30) | nd | 1.29 | 0.04 | 0.20 | 0.31 | 0.39 | 0.46 | 2.80 |
23 | 0 (0.8) | 1 (100) | 0 (550) | −1 (10) | 0.03 | 1.20 | 0.04 | 0.20 | 0.24 | 0.40 | 0.38 | 2.57 |
24 | 0 (0.8) | 1 (100) | 0 (550) | 1 (30) | nd | 1.23 | 0.05 | 0.20 | 0.24 | 0.38 | 0.38 | 2.68 |
25 | 0 (0.8) | 0 (55) | 0 (550) | 0 (20) | nd | 1.28 | 0.04 | 0.20 | 0.20 | 0.37 | 0.34 | 2.98 |
26 | 0 (0.8) | 0 (55) | 0 (550) | 0 (20) | 0.02 | 1.17 | 0.06 | 0.20 | 0.17 | 0.38 | 0.36 | 3.53 |
27 | 0 (0.8) | 0 (55) | 0 (550) | 0 (20) | nd | 1.00 | 0.05 | 0.20 | 0.18 | 0.39 | 0.36 | 2.76 |
Responses | Second-Order Polynomial Equations (Models) | R2 | p | Equation |
---|---|---|---|---|
TPC | Y = 6.47 + 23.3X1 − 0.02X2 − 0.02X3 + 0.07X4 − 5.11X12 + 0.0004X22 + 0.00001X32 + 0.01X42 − 0.06X1X2 − 0.01X1X3 − 0.77X1X4 − 0.00001X2X3 + 0.0003X2X4 + 0.0001X3X4 | 0.9466 | <0.0001 | (6) |
FRAP | Y = 171.43 − 14.6X1 − 0.6X2 − 0.11X3 − 6.27X4 − 0.97X12 + 0.007X22 + 0.0001X32 + 0.1X42 − 0.23X1X2 + 0.03X1X3 + 0.99X1X4 − 0.0002X2X3 + 0.004X2X4 + 0.002X3X4 | 0.9739 | <0.0001 | (7) |
DPPH | Y = 29.32 + 64.81X1 − 0.58X2 − 0.08X3 − 0.43X4 − 75.69X12 + 0.001X22 + 0.00001X32 − 0.03X42 + 0.38X1X2 + 0.04X1X3 + 0.72X1X4 + 0.0001X2X3 + 0.008X2X4 + 0.001X3X4 | 0.9693 | <0.0001 | (8) |
Responses | Optimal Conditions | ||||
---|---|---|---|---|---|
Maximum Predicted Response | E, kV/cm (X1) | tpulse, μs (X2) | T, μs (X3) | t, min (X4) | |
TPC (mg GAE/g) | 16.22 ± 0.79 | 0.9 | 30 | 1000 | 15 |
FRAP (μmol AAE/g) | 91.50 ± 4.22 | 0.9 | 10 | 950 | 25 |
DPPH (μmol AAE/g) | 27.81 ± 1.87 | 0.9 | 80 | 1000 | 25 |
Variables | PLS Model Values | Experimental Values (PEF) | Control (No PEF) | % Increase |
---|---|---|---|---|
TPC (mg GAE/g) | 16.65 | 16.79 ± 0.34 a | 9.62 ± 0.30 b | 74.5 |
FRAP (μmol AAE/g) | 94.95 | 95.41 ± 6.68 a | 54.97 ± 1.15 b | 73.6 |
DPPH (μmol AAE/g) | 20.67 | 24.78 ± 0.72 a | 14.51 ± 0.93 b | 70.9 |
Polyphenolic Compounds (mg/g) | Optimal Extract (PEF) | Control (No PEF) | % Increase |
---|---|---|---|
Neochlorogenic acid | 0.10 ± 0.01 a | 0.03 ± 0 b | 289.1 |
Pelargonin | 1.32 ± 0.06 a | 0.94 ± 0.07 b | 41.1 |
Catechin | 0.20 ± 0.01 a | 0.16 ± 0 b | 23.5 |
Chlorogenic acid | 0.26 ± 0.01 a | 0.21 ± 0.01 b | 23.8 |
Eriocitrin | 0.61 ± 0.03 a | 0.22 ± 0 b | 180.9 |
Rutin | 0.45 ± 0.03 a | 0.32 ± 0.01 b | 41.3 |
Apigenin 7-O-glucoside | 0.51 ± 0.03 a | 0.26 ± 0.01 b | 99.2 |
Ursolic acid | 3.52 ± 0.21 a | 0.88 ± 0.03 b | 300.5 |
Total identified | 6.98 ± 0.38 a | 3.01 ± 0.14 b | 131.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mpakos, D.; Chatzimitakos, T.; Athanasiadis, V.; Mantiniotou, M.; Bozinou, E.; Lalas, S.I. Optimization of Pulsed Electric Field-Based Extraction of Bioactive Compounds from Cannabis sativa Leaves. Analytica 2024, 5, 90-106. https://doi.org/10.3390/analytica5010006
Mpakos D, Chatzimitakos T, Athanasiadis V, Mantiniotou M, Bozinou E, Lalas SI. Optimization of Pulsed Electric Field-Based Extraction of Bioactive Compounds from Cannabis sativa Leaves. Analytica. 2024; 5(1):90-106. https://doi.org/10.3390/analytica5010006
Chicago/Turabian StyleMpakos, Dimitrios, Theodoros Chatzimitakos, Vassilis Athanasiadis, Martha Mantiniotou, Eleni Bozinou, and Stavros I. Lalas. 2024. "Optimization of Pulsed Electric Field-Based Extraction of Bioactive Compounds from Cannabis sativa Leaves" Analytica 5, no. 1: 90-106. https://doi.org/10.3390/analytica5010006
APA StyleMpakos, D., Chatzimitakos, T., Athanasiadis, V., Mantiniotou, M., Bozinou, E., & Lalas, S. I. (2024). Optimization of Pulsed Electric Field-Based Extraction of Bioactive Compounds from Cannabis sativa Leaves. Analytica, 5(1), 90-106. https://doi.org/10.3390/analytica5010006