Development of Novel Conductive Inks for Screen-Printed Electrochemical Sensors: Enhancing Rapid and Sensitive Drug Detection
Abstract
:1. Introduction
2. Electrochemical Sensors
2.1. Printing Electrodes Using the Screen-Printed Technique
2.2. Conductive Inks for Printing Electrodes
2.2.1. Carbonaceous Materials
2.2.2. Binders
2.2.3. Solvents
3. Chemically Modified Printed Electrodes
3.1. Materials Applied in Sensor Modifications
3.2. Transition Metal Materials
4. Characterizations of Screen-Printed Electrodes
4.1. Cyclic Voltammetry and Electrochemical Impedance Spectroscopy
4.2. Scanning Electron Microscopy (SEM)
4.3. Transmission Electron Microscopy
4.4. Fourier-Transform Infrared Spectroscopy (FTIR)
4.5. Raman Spectroscopy
4.6. X-Ray Diffraction (DRX)
5. Applications of SPEs in the Determination of Drugs
6. Perspectives and Challenges
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, A.D.F.O.; de Alencar, A.C.S.; Cruz, E.E.S.; Duarte, F.T.; Constantino, G.K.G.; Duarte, J.N.M.; Pereira, K.V.; Viana, L.G.F.C.; Bomfim, R.S.S.; Rodrigues, V.R.A.; et al. Medication Intoxication by NSAIDs: An Integrative Revie. Braz. J. Health Rev. 2024, 7, 71066. [Google Scholar] [CrossRef]
- da Silva, R.V.; Pinheiro-Machado, R.; de Sousa, A.C.A. Penicillin: Penicillin: From discovery to patenting the large-scale production process. Hist. Ciênc. Saúde-Manguinhos 2024, 31, 202402. [Google Scholar] [CrossRef]
- Brito, A.M.G.; Versiani, A.P.; Dias, M.R.S.; Piris, A.P. Indiscriminate use of antibiotics: An integrative review. Bionorte 2022, 11, 219–225. [Google Scholar] [CrossRef]
- de Souza, F.S.; de Lima, R.Q.; Figueiredo, E.F.G. Intoxication by non-steroid anti-inflammatory drugs: Risks of use. Braz. J. Health Rev. 2021, 4, 14873–14891. [Google Scholar] [CrossRef]
- Xavier, M.S.; Castro, H.N.; de Souza, L.G.D.; de Oliveira, Y.S.L.; Tafuri, N.F.; Amâncio, N.F.G. Self-medication and health risk: A literature review. Braz. J. Health Rev. 2021, 4, 225–240. [Google Scholar] [CrossRef]
- Ates, H.C.; Roberts, J.A.; Lipman, J.; Cass, A.E.; Urban, G.A.; Dincer, C. Therapeutic monitoring of non-local medications. Trends Biotechnol. 2020, 38, 1262–1277. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Karimi, F.; Alizadeh, M.; Sanati, A.L. Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems. Chem. Rec. 2020, 20, 682–692. [Google Scholar] [CrossRef]
- de Oliveira, M.; Frihling, B.E.F.; Velasques, J.; Magalhães Filho, F.J.C.; Cavalheri, P.S.; Migliolo, L. Pharmaceutical residues, and xenobiotic contaminants: Occurrence, analytical techniques and sustainable alternatives for wastewater treatment. Total Environ. Sci. 2020, 705, 135568. [Google Scholar] [CrossRef]
- Akca, Z.; Özok, H.İ.; Yardim, Y.; Şentürk, Z. Electroanalytical investigation and voltammetric quantification of antiviral drug favipiravir in the pharmaceutical formulation and urine sample using a glassy carbon electrode in anionic surfactant media. Turk. J. Chem. 2022, 46, 869–880. [Google Scholar] [CrossRef]
- Sussuchi, E.M.; Monteiro, M.D.S.; dos Santos Júnior, J.C. Electrochemistry: Modified electrodes and their potentialities. Rev. Virtual Quím. 2020, 12, 1145–1160. [Google Scholar]
- Heard, D.M.; Lennox, A.J.J. Electrode Materials in Modern Organic Electrochemistry. Angew. Chem. Int. Ed. 2020, 59, 18866–18884. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, J.M. Development of Simple, Portable, and Low-Cost Electroanalytical Methods for Forensic Analysis Applications. Ph.D. Thesis, Federal University of Uberlândia, Uberlândia, Brazil, 2019. [Google Scholar]
- Asadian, E.; Ghalkhani, M.; Shahrokhian, S. Electrochemical Sensing Based on Carbon Nanoparticles: A Review. Sens. Actuators B Chem. 2019, 293, 183. [Google Scholar] [CrossRef]
- Heikenfeld, J.; Jajack, A.; Rogers, J.; Gutruf, P.; Tian, L.; Pan, T.; Li, R.; Khine, M.; Kim, J.; Wang, J.; et al. Wearable sensors: Modalities, challenges, and prospects. Lab Chip 2018, 18, 217–248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhao, H.; Khan, M.A.; Zou, W.; Xu, J.; Zhang, L.; Zhang, J. Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries. J. Mater. Chem. A 2018, 6, 20564–20620. [Google Scholar] [CrossRef]
- Jian, X.; Liu, S.; Gao, Y.; Tian, W.; Jiang, Z.; Xiao, X.; Tang, H.; Yin, L. Carbon-Based Electrode Materials for Supercapacitor: Progress, Challenges and Prospective Solutions. J. Electr. Eng. 2016, 4, 75–87. [Google Scholar] [CrossRef]
- Pereira, D.F. Development of Paper-Based Printed Electrodes from Graphite Ink Modified with Magnetite for the Determination of Vitamins. Master’s Thesis, Federal University of Santa Catarina, Florianópolis, Brazil, 2022. [Google Scholar]
- Pérez-Fernández, B.; Costa-García, A.; Muñiz, A.d.l.E. Electrochemical (Bio)Sensors for Pesticides Detection Using Screen-Printed Electrodes. Biosensors 2020, 10, 32. [Google Scholar] [CrossRef]
- Ferrari, A.G.-M.; Rowley-Neale, S.J.; Banks, C.E. Screen-printed electrodes: Transitioning the laboratory in-to-the field. Talanta Open 2021, 3, 100032. [Google Scholar] [CrossRef]
- Malvessi, G.S.; Hoppe, T.D.; Zapp, E.; Brondani, D. Lab-made screen-printed electrode with conductive ink based on carbon nanomaterials for simultaneous electrochemical analysis of bisphenol A, catechol, and 4-nitrophenol. Measurement 2024, 231, 114601. [Google Scholar] [CrossRef]
- Dinu, A.; Apetrei, C. Development of Polypyrrole Modified Screen-Printed Carbon Electrode Based Sensors for Determination of L-Tyrosine in Pharmaceutical Products. Int. J. Mol. Sci. 2021, 22, 7528. [Google Scholar] [CrossRef]
- Demir, E.; Silah, H. Development of a New Analytical Method for Determination of Veterinary Drug Oxyclozanide by Electrochemical Sensor and Its Application to Pharmaceutical Formulation. Chemosensors 2020, 8, 25. [Google Scholar] [CrossRef]
- Hrioua, A.; Loudiki, A.; Farahi, A.; Bakasse, M.; Lahrich, S.; Saqrane, S.; El Mhammedi, M.A. Recent advances in electrochemical sensors for amoxicillin detection in biological and environmental samples. Bioelectrochemistry 2021, 137, 107687. [Google Scholar] [CrossRef]
- dos Santos, A.M. Development of Electrochemical Sensors Based on Composites for the Simultaneous Determination of Drugs. Ph.D. Thesis, Federal University of São Carlos, São Carlos, Brazil, 2019. [Google Scholar]
- Mincu, N.-B.; Lazar, V.; Stan, D.; Mihailescu, C.M.; Iosub, R.; Mateescu, A.L. Screen-Printed Electrodes (SPE) for In Vitro Diagnostic Purpose. Diagnostics 2020, 10, 517. [Google Scholar] [CrossRef]
- Qin, Y.; Ouyang, X.; Lv, Y.; Liu, W.; Liu, Q.; Wang, S. A Review of Carbon-Based Conductive Inks and Their Printing Technologies for Integrated Circuits. Coatings 2023, 13, 1769. [Google Scholar] [CrossRef]
- Camargo, J.R.; Orzari, L.O.; Araújo, D.A.G.; de Oliveira, P.R.; Kalinke, C.; Rocha, D.P.; dos Santos, A.L.; Takeuchi, R.M.; Munoz, R.A.A.; Bonacin, J.A.; et al. Development of conductive inks for electrochemical sensors and biosensors. Microchem. J. 2021, 164, 105998. [Google Scholar] [CrossRef]
- Pouria, K.; Gehan, C.J.; Chao, W.; Mehran, T. High conductivity and stability intercalated carbonaceous conductors. Carbon Trends 2022, 9, 100229. [Google Scholar]
- Maddipatla, D.; Narakathu, B.B.; Atashbar, M. Recent Progress in Manufacturing Techniques of Printed and Flexible Sensors: A Review. Biosensors 2020, 10, 199. [Google Scholar] [CrossRef] [PubMed]
- Hassani, F.A.; Shi, Q.; Wen, F.; He, T.; Haroun, A.; Yang, Y.; Feng, Y.; Lee, C. Smart materials for smart healthcare– moving from sensors and actuators to self-sustained nanoenergy nanosystems. Smart Mater. Med. 2020, 1, 92–124. [Google Scholar]
- Barhoum, A.; Hamimed, S.; Slimi, H.; Othmani, A.; Abdel-Haleem, F.M.; Bechelany, M. Modern designs of electrochemical sensor platforms for environmental analyses: Principles, nanofabrication opportunities, and challenges. Trends Environ. Anal. Chem. 2023, 38, 00199. [Google Scholar] [CrossRef]
- Bounegru, A.V.; Apetrei, C. Carbonaceous Nanomaterials Employed in the Development of Electrochemical Sensors Based on Screen-Printing Technique—A Review. Catalysts 2020, 10, 680. [Google Scholar] [CrossRef]
- Musa, A.M.; Kiely, J.; Luxton, R.; Honeychurch, K.C. Recent progress in screen-printed electrochemical sensors and biosensors for the detection of estrogens. TrAC Trends Anal. Chem. 2021, 139, 116254. [Google Scholar] [CrossRef]
- Buffon, E. Disposable, Molecularly Imprinted Electrochemical Sensors Based on Reduced Graphene Oxide and Metal Nanoparticles for Phenolic Acid Analysis in Brazilian Fruit Waste. Ph.D. Thesis, São Paulo State University, Araraquara, Brazil, 2023. [Google Scholar]
- Mendez-Rossal, H.R.; Wallner, G.M. Printability and Properties of Conductive Inks on Primer-Coated Surfaces. Int. J. Polym. Sci. 2019, 3874181, 8. [Google Scholar] [CrossRef]
- Pajor-Świerzy, A.; Pawłowski, R.; Warszyński, P.; Szczepanowicz, K. The conductive properties of ink coating based on Ni–Ag core–shell nanoparticles with the bimodal size distribution. J. Mater. Sci. Mater. Electron. 2020, 31, 12991–12999. [Google Scholar] [CrossRef]
- Megha, G.; Kulwant, S.; Nitu, B. Conductive polymers: A multipurpose material for protecting coating. Prog. Org. Coat. 2024, 187, 108083. [Google Scholar]
- Gholami, F.; Tomas, M.; Gholami, Z.; Mirzaei, S.; Vakili, M. Surface Characterization of Carbonaceous Materials Using Inverse Gas Chromatography: A Review. Electrochem 2020, 1, 367–387. [Google Scholar] [CrossRef]
- Li, X.; Fan, B.; Wang, Z.; Guan, G. Carbonaceous matrixes-based free-standing electrode materials for energy storage. Carbon Trends 2024, 16, 100397. [Google Scholar] [CrossRef]
- Patel, T.; Huang, J.; Krukiewicz, K. Multifunctional organic monolayer-based coatings for implantable biosensors and bioelectronic devices: Review and perspectives. Biosens. Bioelectron. X 2023, 14, 100349. [Google Scholar] [CrossRef]
- Dokur, E.; Uruc, S.; Kurteli, R.; Gorduk, O.; Sahin, Y. Investigation of flexible electrochemical sensor properties of graphite conductive ink modified textile products and their applications in electrical circuits. Mater. Today Commun. 2023, 37, 106920. [Google Scholar] [CrossRef]
- Verma, D.; Dubey, N.; Yadav, A.K.; Saraya, A.; Sharma, R.; Solanki, P.R. Disposable paper-based screen-printed electrochemical immunoplatform for dual detection of esophageal cancer biomarkers in patients’ serum samples. Mater. Adv. 2024, 5, 2153–2168. [Google Scholar] [CrossRef]
- Marchianò, V.; Tricase, A.; Macchia, E.; Bollella, P.; Torsi, L. Self-powered wearable biosensor based on stencil-printed carbon nanotube electrodes for ethanol detection in sweat. Anal. Bioanal. Chem. 2024, 416, 5303–50316. [Google Scholar] [CrossRef]
- Kim, D.S.; Jeong, J.M.; Park, H.J.; Kim, Y.K.; Lee, K.G.; Choi, B.G. Highly Concentrated, Conductive, Defect-free Graphene Ink for Screen-Printed Sensor Application. Nano-Micro Lett. 2021, 13, 87. [Google Scholar] [CrossRef] [PubMed]
- Hairi, N.I.I.M.; Ralib, A.A.M.; Nordin, A.N.; Yunos, M.F.A.M.; Ming, L.L.; Tung, L.H.; Samsudin, Z. Recent advance in using eco-friendly carbon-based conductive ink for printed strain sensor: A review. Clean. Mater. 2024, 12, 100248. [Google Scholar] [CrossRef]
- Szroeder, P.; Ziółkowski, P.; Mosińska, L.; Trykowski, G. Boosting electrochemical performance of single-walled carbon nanotube three-dimensional architectures through appropriate selection of organic dispersant. Diam. Relat. Mater. 2024, 148, 111440. [Google Scholar] [CrossRef]
- Park, S.; Song, Y.; Ryu, B.; Song, Y.-B.; Lee, H.; Kim, Y.; Lim, J.; Lee, D.; Yoon, H.; Lee, C.; et al. Highly Conductive Ink Based on Self-Aligned Single-Walled Carbon Nanotubes through Inter-Fiber Sliding in Cellulose Fibril Networks. Adv. Sci. 2024, 11, 2402854. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Park, S.-J.; Choi, J.-W. Electrical Property of Graphene and Its Application to Electrochemical Biosensing. Nanomaterials 2019, 9, 297. [Google Scholar] [CrossRef] [PubMed]
- Poulin, A.; Aeby, X.; Siqueira, G.; Nyströn, G. Versatile carbon-loaded shellac ink for disposable printed electronics. Sci. Rep. 2021, 11, 23784. [Google Scholar] [CrossRef] [PubMed]
- Zappi, D.; Varani, G.; Cozzoni, E.; Iatsunskyi, I.; Laschi, S.; Giardi, M.T. Innovative Eco-Friendly Conductive Ink Based on Carbonized Lignin for the Production of Flexible and Stretchable Bio-Sensors. Nanomaterials 2021, 11, 3428. [Google Scholar] [CrossRef]
- Gemeiner, P.; Sarakhman, O.; Hatala, M.; Ház, A.; Roupcová, P.; Mackuľak, T.; Barek, J.; Švorc, Ľ. A new generation of fully-printed electrochemical sensors based on biochar/ethylcellulose-modified carbon electrodes: Fabrication, characterization and practical applications. Electrochim. Acta 2024, 487, 144161. [Google Scholar] [CrossRef]
- Zhang, Y.; Cen, Q.; Xu, X.; Li, W.; Zhao, Y.; Li, W.; Liu, Q.; Chen, M.; Guo, N.; Wu, W.; et al. The effect of PVAc in silver ink for adhesion and conductivity of conductive pattern. J. Mater. Res. Technol. 2022, 18, 4277–4284. [Google Scholar] [CrossRef]
- van Hazendonk, L.S.; Vonk, C.F.; van Grondelle, W.; Vonk, N.H.; Friedrich, H. Towards a predictive understanding of direct ink writing of graphene-based inks. Appl. Mater. Today 2024, 36, 102014. [Google Scholar] [CrossRef]
- Carvalho, J.H.S.; Gogola, J.L.; Bergamini, M.F.; Marcolino-Junior, L.H.; Janegitz, B.C. Disposable and low-cost lab-made screen-printed electrodes for voltammetric determination of L-dopa. Sens. Actuators Rep. 2021, 3, 100056. [Google Scholar] [CrossRef]
- Carvalho, J.H.S.; Stefano, J.S.; Brazaca, L.C.; Janegitz, B.C. New conductive ink based on carbon nanotubes and glass varnish for the construction of a disposable electrochemical sensor. J. Electroanal. Chem. 2023, 937, 117428. [Google Scholar] [CrossRef]
- Andreotti, I.A.A.; Orzari, L.O.; Camargo, J.R.; Faria, R.C.; Marcolino-Junior, L.H.; Bergamini, M.F.; Gatti, A.; Janegitz, B.C. Disposable and flexible electrochemical sensor made by recyclable material and low cost conductive ink. J. Electroanal. Chem. 2019, 840, 109–116. [Google Scholar] [CrossRef]
- Shitanda, I.; Oda, K.; Loew, N.; Watanabe, H.; Itagaki, M.; Tsujimura, S.; Zebda, A. Chitosan-based enzyme ink for screen-printed bioanodes. RSC Adv. 2021, 11, 20550–20556. [Google Scholar] [CrossRef] [PubMed]
- Henrique, J.M.; Camargo, J.R.; de Oliveira, G.G.; Stefano, J.S.; Janegitz, B.C. Disposable electrochemical sensor based on shellac and graphite for sulfamethoxazole detection. Microchem. J. 2021, 170, 106701. [Google Scholar] [CrossRef]
- de Lima, L.F.; Ferreira, A.F.; Maciel, C.C.; Ferreira, M.; de Araujo, W.R. Disposable and low-cost electrochemical sensor based on the colorless nail polish and graphite composite material for tartrazine detection. Talanta 2021, 227, 122200. [Google Scholar] [CrossRef]
- Raja, I.S.; Kim, C.; Kang, M.S.; Joung, Y.K.; Lee, J.H.; Han, D.W. Studies on cytocompatibility of human dermal fibroblasts on carbon nanofiber nanoparticle-containing bioprinted constructs. Discov. Nano 2024, 19, 149. [Google Scholar] [CrossRef]
- Corzo, D.; Rosas-Villalva, D.; Amruth, C.; Tostado-Bláquez, G.; Alexandre, E.B.; Hernandez, L.H.; Han, J.; Xu, H.; Babics, M.; De Wolf, S.; et al. High-performing organic electronics using terpene green solvents from renewable feedstocks. Nat. Energy 2023, 8, 62–73. [Google Scholar] [CrossRef]
- Zhou, F.; Hearne, Z.; Li, C.J. Water—The greenest solvent overall. Curr. Opin. Green Sustain. Chem. 2019, 18, 118–123. [Google Scholar] [CrossRef]
- Chung, K.Y.; Xu, B.; Tan, D.; Yang, Q.; Li, Z.; Fu, H. Naturally Crosslinked Biocompatible Carbonaceous Liquid Metal Aqueous Ink Printing Wearable Electronics for Multi-Sensing and Energy Harvesting. Nano-Micro Lett. 2024, 16, 149. [Google Scholar] [CrossRef]
- Htwe, Y.Z.N.; Abdullah, M.K.; Mariatti, M. Optimization of graphene conductive ink using solvent exchange techniques for flexible electronics applications. Synth. Met. 2021, 274, 116719. [Google Scholar] [CrossRef]
- Oliveira, V.C.; Calábria, L.K.; de Rezende, A.A.A. Electrochemical sensors for pesticide detection in environmental samples: A literature review. Online perspectives 2022, 12, 12–21. [Google Scholar]
- Alkire, R.C.; Kolb, D.M.; Lipkowski, J.; Ross, P.N. Chemically Modified Electrodes. In Advances in Electrochemical Science and Engineering, 1st ed.; Wiley-VCH: Weinheim, Germany, 2009; Volume 11, pp. 1–50. ISBN 9783527627059. [Google Scholar]
- Yoon, H.; Nah, J.; Kim, H.; Ko, S.; Sharifuzzaman, M.; Barman, S.C.; Xuan, X.; Kim, J.; Park, J.Y. A chemically modified laser-induced porous graphene based flexible and ultrasensitive electrochemical biosensor for sweat glucose detection. Sens. Actuators B Chem. 2020, 311, 127866. [Google Scholar] [CrossRef]
- Rocha, D.P.; Squissato, A.L.; da Silva, S.M.; Richter, E.M.; Munoz, R.A. Improved electrochemical detection of metals in biological samples using 3D-printed electrode: Chemical/electrochemical treatment exposes carbon-black conductive sites. Electrochim. Acta 2020, 335, 135688. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, X.; Liu, G.; Cao, Y.; Liu, N.; Thuy, N.T.D.; Zhang, L.; Yu, M. A flexible and disposable electrochemical sensor for the evaluation of arsenic levels: A new and efficient method for the batch fabrication of chemically modified electrodes. Anal. Chim. Acta 2022, 1194, 339413. [Google Scholar] [CrossRef] [PubMed]
- Cardenas, A.; Frontana, C. Evaluation of a carbon ink chemically modified electrode incorporating a copper-neocuproine complex for the quantification of antioxidants. Sens. Actuators B Chem. 2020, 313, 128070. [Google Scholar] [CrossRef]
- Giancarla, A.; Zanoni, C.; Merli, D.; Magnaghi, L.R.; Biesuz, R. A new cysteamine-copper chemically modified screen-printed gold electrode for glyphosate determination. Talanta 2024, 269, 125436. [Google Scholar] [CrossRef]
- Torres-Rojas, F.; Muñoz, D.; Canales, C.P.; Hevia, S.A.; Leyton, F.; Veloso, N.; Isaacs, M.; Vargas, I.T. Synergistic effect of electrotrophic perchlorate reducing microorganisms and chemically modified electrodes for enhancing bioelectrochemical perchlorate removal. Environ. Res. 2023, 233, 116442. [Google Scholar] [CrossRef] [PubMed]
- Jahani, P.M.; Mohammadi, S.Z.; Khodabakhshzadeh, A.; Cha, J.H.; Asl, M.S.; Shokouhimehr, M.; Zhang, K.; Le, Q.V.; Peng, W. Simultaneous detection of morphine and diclofenac using screen-printed electrode modified with graphene nanoribbon. Int. J. Electrochem. Sci. 2020, 15, 9037–9048. [Google Scholar] [CrossRef]
- Abdel-Raoof, A.M.; Abdel-Monem, A.H.; Almrasy, A.A.; Mohamed, T.F.; Nasr, Z.A.; Mohamed, G.F. Optimization of highly sensitive screen-printed electrodes modified with cerium (IV) oxide nanoparticles for the electrochemical determination of oxymetazoline hydrochloride using response surface methodology. J. Electrochem. Soc. 2020, 167, 047502. [Google Scholar] [CrossRef]
- Silva, D.N.; Cândido, T.C.O.; Pereira, A.C. Simple and disposable device based on gold nanoparticles modified screen-printed carbon electrode for detection of ciprofloxacin. Journal of Solid State Electrochemistry 2024, 1–14. [Google Scholar] [CrossRef]
- Dinu, A.; Apetrei, C. Voltammetric Determination of Phenylalanine Using Chemically Modified Screen-Printed Based Sensors. Chemosensors 2020, 8, 113. [Google Scholar] [CrossRef]
- Dăscălescu, D.; Apetrei, C. Voltammetric Determination of Levodopa Using Mesoporous Carbon—Modified Screen-Printed Carbon Sensors. Sensors 2021, 21, 6301. [Google Scholar] [CrossRef]
- Shehata, M.; Fekry, A.M.; Walcarius, A. Moxifloxacin Hydrochloride Electrochemical Detection at Gold Nanoparticles Modified Screen-Printed Electrode. Sensors 2020, 20, 2797. [Google Scholar] [CrossRef] [PubMed]
- Khosrokhavar, R.; Motaharian, A.; Hosseini, M.R.M.; Mohammadsadegh, S. Screen-printed carbon electrode (SPCE) modified by molecularly imprinted polymer (MIP) nanoparticles and graphene nanosheets for determination of sertraline antidepressant drug. Microchem. J. 2020, 159, 105348. [Google Scholar] [CrossRef]
- Maduraiveerana, G.; Sasidharana, M.; Jinb, W. Earth-abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications. Prog. Mater. Sci. 2019, 106, 100574. [Google Scholar] [CrossRef]
- Chen, W.-H.; Maheshwaran, S.; Park, Y.-K.; Ong, H.C. Iron-based electrode material composites for electrochemical sensor application in the environment: A review. Sci. Total Environ. 2024, 953, 176128. [Google Scholar] [CrossRef]
- Skoog, D.A.; West, D.M.; Holler, F.J.; Crouch, S. Fundamentals of Analytical Chemistry, 9th ed.; Cengage Learning: São Paulo, Brazil, 2015; pp. 602–640. ISBN 9788522121373. [Google Scholar]
- Lazanas, A.C.; Prodromidis, M.I. Electrochemical impedance spectroscopy—A tutorial. ACS Meas. Sci. Au 2023, 3, 162–193. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, J.; Gharbi, O.; Vivier, V.; Gao, M.; Orazem, M.E. Electrochemical impedance spectroscopy. Nat. Rev. Methods Primers 2021, 1, 41. [Google Scholar] [CrossRef]
- Gharbi, O.; Tran, M.T.; Tribollet, B.; Turmine, M.; Vivier, V. Revisiting cyclic voltammetry and electrochemical impedance spectroscopy analysis for capacitance measurements. Electrochim. Acta 2020, 343, 136109. [Google Scholar] [CrossRef]
- Kozak, J.; Tyszczuk-Rotko, K. Screen-printed gold electrode for ultrasensitive voltammetric determination of the antipsychotic drug thioridazine. Measurement 2023, 217, 113107. [Google Scholar] [CrossRef]
- Kozak, J.; Tyszczuk-Rotko, K.; Wójciak, M.; Sowa, I.; Rotko, M. First screen-printed sensor (electrochemically activated screen-printed boron-doped diamond electrode) for quantitative determination of rifampicin by adsorptive stripping voltammetry. Materials 2021, 14, 4231. [Google Scholar] [CrossRef] [PubMed]
- Ehsan, M.A.; Khan, S.A.; Rehman, A. Screen-printed graphene/carbon electrodes on paper substrates as impedance sensors for detection of coronavirus in nasopharyngeal fluid samples. Diagnostics 2021, 11, 1030. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, K.; Khan, S.A.; Khan, S.B.; Asiri, A.M. Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization, 1st ed.; Springer: Cham, Switzerland, 2018; pp. 113–145. ISBN 978-3-319-92955-2. [Google Scholar]
- Hasanpour, M.; Pardakhty, A.; Tajik, S. The development of disposable electrochemical sensor based on MoSe2-rGO nanocomposite modified screen-printed carbon electrode for amitriptyline determination in the presence of carbamazepine, application in biological and water samples. Chemosphere 2022, 308, 136336. [Google Scholar] [CrossRef] [PubMed]
- Kondori, T.; Tajik, S.; Akbarzadeh-T, N.; Beitollahi, H.; Graiff, C. Screen-printed electrode modified with co-NPs, as an electrochemical sensor for simultaneous determination of doxorubicin and dasatinib. J. Iran. Chem. Soc. 2022, 19, 4423–4434. [Google Scholar] [CrossRef]
- Hassan, S.S.; Kamel, A.H.; Fathy, M.A. A novel screen-printed potentiometric electrode with carbon nanotubes/polyaniline transducer and molecularly imprinted polymer for the determination of nalbuphine in pharmaceuticals and biological fluids. Anal. Chim. Acta 2022, 1227, 340239. [Google Scholar] [CrossRef] [PubMed]
- Saenchoopa, A.; Klangphukhiew, S.; Somsub, R.; Talodthaisong, C.; Patramanon, R.; Daduang, J.; Daduang, S.; Kulchat, S. A disposable electrochemical biosensor based on screen-printed carbon electrodes modified with silver nanowires/hpmc/chitosan/urease for the detection of mercury (ii) in water. Biosensors 2021, 11, 351. [Google Scholar] [CrossRef]
- Liao, Y.; Zhang, R.; Wang, H.; Ye, S.; Zhou, Y.; Ma, T.; Zhu, J.; Pfefferleb, L.D.; Qian, J. Highly conductive carbon-based aqueous inks toward electroluminescent devices, printed capacitive sensors and flexible wearable electronics. RSC Adv. 2019, 9, 15184–15189. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, W.; Wang, J.; Li, X.; Liu, Y. A high-performance, all-solid-state Na+ selective sensor printed with eco-friendly conductive ink. RSC Adv. 2023, 13, 16610–16618. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Singh, P.; Kumar, A.; Gupta, N. Electrochemical detection of dopamine by using nickel supported carbon nanofibers modified screen-printed electrode. Diam. Relat. Mater. 2023, 133, 109677. [Google Scholar] [CrossRef]
- Fahelelbom, K.M.; Saleh, A.; Al-Tabakha, M.M.; Ashames, A.A. Recent applications of quantitative analytical FTIR spectroscopy in pharmaceutical, biomedical, and clinical fields: A brief review. Rev. Anal. Chem. 2022, 41, 21–33. [Google Scholar] [CrossRef]
- Mattioli, I.A.; Cervini, P.; Cavalheiro, É.T.G. Screen-printed disposable electrodes using graphite-polyurethane composites modified with magnetite and chitosan-coated magnetite nanoparticles for voltammetric epinephrine sensing: A comparative study. Microchim. Acta 2020, 187, 318. [Google Scholar] [CrossRef] [PubMed]
- Montiel, N.F.; Parrilla, M.; Beltrán, V.; Nuyts, G.; Van Durme, F.; De Wael, K. The opportunity of 6-monoacetylmorphine to selectively detect heroin at pre-anodized screen-printed electrodes. Talanta 2021, 226, 122005. [Google Scholar] [CrossRef]
- Inam, A.K.M.S.; Angeli, M.A.C.; Douaki, A.; Shkodra, B.; Lugli, P.; Petti, L. An Aptasensor based on a flexible screen-printed silver electrode for the rapid detection of chlorpyrifos. Sensors 2022, 22, 2754. [Google Scholar] [CrossRef] [PubMed]
- Sala, O. Fundamentals of Raman and Infrared Spectroscopy, 2nd ed.; UNESP: São Paulo, Brazil, 2011; pp. 30–65. ISBN 9788571398689. [Google Scholar]
- Romay, L.; Nuñez-Marinero, P.; Perales-Rondon, J.V.; Heras, A.; del Campo, F.J.; Colina, A. New Screen-Printed Electrodes for Raman Spectroelectrochemistry. Determination of p-Aminosalicylic Acid. Anal. Chim. Acta 2024, 1325, 343095. [Google Scholar] [CrossRef] [PubMed]
- Castaño-Guerrero, Y.; Romaguera-Barcelay, Y.; Moreira, F.T.C.; Brito, W.R.; Fortunato, E.; Sales, M.G.F. Poly(Thionine)-Modified Screen-Printed Electrodes for CA 19-9 Detection and Its Properties in Raman Spectroscopy. Chemosensors 2022, 10, 92. [Google Scholar] [CrossRef]
- Matvieiev, O.; Šelešovská, R.; Vojs, M.; Marton, M.; Michniak, P.; Hrdlička, V.; Hatala, M.; Janíková, L.; Chýlková, J.; Skopalová, J.; et al. Novel Screen-Printed Sensor with Chemically Deposited Boron-Doped Diamond Electrode: Preparation, Characterization, and Application. Biosensors 2022, 12, 241. [Google Scholar] [CrossRef] [PubMed]
- Gomes, R.S.; Gomez-Rodríguez, B.A.; Fernandes, R.; Sales, M.G.F.; Moreira, F.T.C.; Dutra, R.F. Plastic Antibody of Polypyrrole/Multiwall Carbon Nanotubes on Screen-Printed Electrodes for Cystatin C Detection. Biosensors 2021, 11, 175. [Google Scholar] [CrossRef]
- Pradela-Filhoa, L.A.; Andreotti, I.A.A.; Carvalho, J.H.S.; Araujoa, D.A.G.; Orzari, L.O.; Gatti, A.; Takeuchia, R.M.; Santos, A.L.; Janegitz, B.C. Glass varnish-based carbon conductive ink: A new way to produce disposable electrochemical sensors. Sens. Actuators B Chem. 2020, 305, 127433. [Google Scholar] [CrossRef]
- Hoppe, T.D. Electrochemically Synthesized Molecularly Imprinted Polymer on Screen-Printed Carbon Electrode for Electrochemical Determination of Paracetamol in Water. Master’s Thesis, Federal University of Santa Catarina, Blumenau, Brazil, 2024. [Google Scholar]
- Kim, M.; Park, D.; Park, J.; Park, J. Bio-Inspired Molecularly Imprinted Polymer Electrochemical Sensor for Cortisol Detection Based on O-Phenylenediamine Optimization. Biomimetics 2023, 8, 282. [Google Scholar] [CrossRef]
- de Souza, C.C.; Alves, G.F.; Lisboa, T.P.; Matos, M.A.C.; Matos, R.C. Low-cost paper-based electrochemical sensor for the detection of ciprofloxacin in honey and milk samples. J. Food Compos. Anal. 2022, 112, 104700. [Google Scholar] [CrossRef]
- Guo, M.; Chen, Y.; Mo, X.; Sun, K.; Du, Y.; Hu, F. Construction of a microfluidic electrochemical sensor based on screen printing electrode for the detection of fluoxetine. Microchem. J. 2024, 204, 111103. [Google Scholar] [CrossRef]
- Silva, F.W.L.; Name, L.L.; Tiba, D.Y.; Braz, B.F.; Santelli, R.E.; Canevari, T.C.; Cincotto, F.H. High sensitivity, low-cost, and disposability: A novel screen-printed electrode developed for direct electrochemical detection of the antibiotic ceftriaxone. Talanta 2024, 266, 125075. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.; Castañeda, G.; Lizcano, I. Electrochemical sensor for leukemia drug imatinib determination in urine by adsorptive striping square wave voltammetry using modified screen-printed electrodes. Electrochim. Acta 2024, 269, 668–675. [Google Scholar] [CrossRef]
- Qiu, S.; Wu, C.; Akter, S.; Hong, S.; Liu, H.; Mahmud, S. Copper oxide–modified screen-printed carbon electrodes for the detection of mycobacterium tuberculosis infection treating drug: Isoniazid. Ionics 2024, 30, 8631–8645. [Google Scholar] [CrossRef]
- Mehmandoust, M.; Soylak, M.; Erk, N. Innovative molecularly imprinted electrochemical sensor for the nanomolar detection of Tenofovir as an anti-HIV drug. Talanta 2023, 253, 123991. [Google Scholar] [CrossRef] [PubMed]
- Tajik, S.; Beitollahi, H.; Nejad, F.G. Novel and simple electrochemical sensing platform based on polypyrrole nanotubes/ZIF-67 nanocomposite/screen printed graphite electrode for sensitive determination of metronidazole. Electrochem. Commun. 2024, 169, 107824. [Google Scholar] [CrossRef]
- Naghian, E.; Marzi Khosrowshahi, E.; Sohouli, E.; Ahmadi, F.; Rahimi-Nasrabadi, M.; Safarifard, V. A new electrochemical sensor for the detection of fentanyl lethal drug by a screen-printed carbon electrode modified with the open-ended channels of Zn(ii)-MOF. New J. Chem. 2020, 44, 9271–9277. [Google Scholar] [CrossRef]
- Materón, E.M.; Wong, A.; Freitas, T.A.; Faria, R.C.; Oliveira, O.N. A sensitive electrochemical detection of metronidazole in synthetic serum and urine samples using low-cost screen-printed electrodes modified with reduced graphene oxide and C60. J. Pharm. Anal. 2021, 11, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Stelmaszczyk, P.; Białkowska, K.; Sekuła, K.; Stanaszek, R.; Wietecha-Posłuszny, R. Screen-printed electrode-based sensor for rapid ketamine determination: Optimization and on-site application for seized drugs analysis. Monatshefte Chem.—Chem. Mon. 2024, 155, 881–888. [Google Scholar] [CrossRef]
- Zinatloo-Ajabshir, S.; Mahmoudi-Moghaddam, H.; Amiri, M.; Akbari Javar, H. A green and simple procedure to synthesize dysprosium cerate plate-like nanostructures and their application in the electrochemical sensing of mesalazine. J. Mater. Sci. Mater. Electron. 2024, 35, 500. [Google Scholar] [CrossRef]
- Ali, M.R.; Bacchu, M.S.; Al-Mamun, M.R.; Ahommed, M.S.; Saad Aly, M.A.; Khan, M.Z.H. N-Hydroxysuccinimide crosslinked graphene oxide–gold nanoflower modified SPE electrode for sensitive detection of chloramphenicol antibiotic. RSC Adv. 2021, 11, 15565–15572. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.R.G.; dos Santos, G.F.S.; Vasconcellos, M.L.S.; Ferreira, R.Q. Development of electroanalytical procedure for monitoring of metamizole in organic fertilizers (human urine and struvite) associated with portable equipment. J. Environ. Manag. 2020, 266, 110587. [Google Scholar] [CrossRef] [PubMed]
- Seguro, I.; Rebelo, P.; Pacheco, J.G.; Delerue-Matos, C. Electropolymerized, Molecularly Imprinted Polymer on a Screen-Printed Electrode—A Simple, Fast, and Disposable Voltammetric Sensor for Trazodone. Sensors 2022, 22, 2819. [Google Scholar] [CrossRef]
- Wang, T.; Jafar, N.N.A.; Al-Rihaymee, A.M.A.; Alhameedi, D.Y.; Rasen, F.A.; Hashim, F.S.; Hussein, T.K.; Ramadan, M.F.; Alasedi, K.K.; Suliman, M.; et al. Highly efficient electrocatalytic oxidation of levodopa as a Parkinson therapeutic drug based on modified screen-printed electrode. Heliyon 2024, 10, 34689. [Google Scholar] [CrossRef] [PubMed]
- Martoni, L.V.L. Development of Printed Photoelectrochemical Sensors Modified with Carbon Nanospheres for Quantification of Emerging Pollutants in Water Supply Samples. Ph.D. Thesis, Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, Brazil, 2023. [Google Scholar]
- Kozak, J.; Tyszczuk-Rotko, K.; Gorylewski, D. A nanoporous screen-printed carbon sensor for environmental and clinical monitoring of the antibiotic ciprofloxacin. Measurement 2023, 222, 113626. [Google Scholar] [CrossRef]
- Jahani, P.M.; Tajik, S.; Dourandish, Z. Electrochemical Sensor Based on Ce-MOF Modified Screen-Printed Electrode for Metronidazole Determination. Chem. Methodol. 2024, 8, 123–132. [Google Scholar]
- Tajik, S.; Dourandish, Z.; Nejad, F.G.; Aghaei Afshar, A.; Beitollahi, H. Voltammetric Determination of Isoniazid in the Presence of Acetaminophen Utilizing MoS2-Nanosheet-Modified Screen-Printed Electrode. Micromachines 2022, 13, 369. [Google Scholar] [CrossRef] [PubMed]
- Tyszczuk-Rotko, K.; Kozak, J.; Węzińska, A. Electrochemically Activated Screen-Printed Carbon Electrode for Determination of Ibuprofen. Appl. Sci. 2021, 11, 9908. [Google Scholar] [CrossRef]
- Kozak, J.; Tyszczuk-Rotko, K.; Wójciak, M.; Sowa, I. Electrochemically Activated Screen-Printed Carbon Sensor Modified with Anionic Surfactant (aSPCE/SDS) for Simultaneous Determination of Paracetamol, Diclofenac and Tramadol. Materials 2021, 14, 3581. [Google Scholar] [CrossRef] [PubMed]
- Sopaj, F.; Loshaj, F.; Contini, A.; Mehmeti, E.; Veseli, A. Preparation of an efficient and selective voltammetric sensor based on screen printed carbon ink electrode modified with TiO2 nanoparticles for Azithromycin quantification. Results Chem. 2023, 6, 101123. [Google Scholar] [CrossRef]
- Sanli, S. Single-drop electrochemical immunosensor with 3D-printed magnetic attachment for onsite smartphone detection of amoxicillin in raw milk. Food Chem. 2024, 437, 137823. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.R.G.; Rodrigues, J.G.A.; Vasconcellos, M.L.S.; Ribeiro, E.S.; D’Elia, E.; de, Q. Ferreira, R. Portable and simple electroanalytical procedure for simultaneous detection of dipyrone and norfloxacin with disposable commercial electrodes in water and organic fertilizers. Ionics 2022, 28, 4833–4841. [Google Scholar] [CrossRef]
- Pacheco, J.C.; Brito, J.A.R.; dos Santos, C.C.; Bezerra, C.W.B.; Damos, F.S.; Luz, R.C.S. A simple method for determination of chloroquine based on electrogenerated chemiluminescence. J. Braz. Chem. Soc. 2023, 34, 1410–1419. [Google Scholar] [CrossRef]
- Zanoni, C.; Rovida, R.; Magnaghi, L.R.; Biesuz, R.; Alberti, G. Voltammetric Detection of Irbesartan by Molecularly Imprinted Polymer (MIP)-Modified Screen-Printed Electrodes. Chemosensors 2022, 10, 517. [Google Scholar] [CrossRef]
- Haššo, M.; Kekeľáková, A.; Hanko, M.; Švorc, Ľ. Powerful Analytical Platform for Diazepam Determination in Pharmaceuticals and Alcoholic Drinks Based on Batch Injection Analysis Coupled with Adsorptive Stripping Voltammetry. J. Electrochem. Soc. 2024, 171, 047517. [Google Scholar] [CrossRef]
- Alfadhel, M.; Alrobaian, M.; Arida, H. Fabrication of New Potentiometric Microsensor for Metformin Based on Modified Screen-Printed Microchip. Int. J. Electrochem. Sci. 2021, 16, 210660. [Google Scholar] [CrossRef]
- Garima; Sachdev, A.; Matai, I. An electrochemical sensor based on cobalt oxyhydroxide nanoflakes/reduced graphene oxide nanocomposite for detection of illicit drug-clonazepam. J. Electroanal. Chem. 2022, 919, 116537. [Google Scholar] [CrossRef]
- Wang, K.; Yang, L.; Huang, H.; Lv, N.; Liu, J.; Liu, Y. Nanochannel Array on Electrochemically Polarized Screen-Printed Carbon Electrode for Rapid and Sensitive Electrochemical Determination of Clozapine in Human Whole Blood. Molecules 2022, 27, 2739. [Google Scholar] [CrossRef]
- Beitollahi, H.; Tajik, S.; Aflatoonian, M.R.; Nejad, F.G.; Zhang, K.; Asl, M.S.; Van Le, Q.; Cha, J.H.; Shokouhimehr, M.; Peng, W. A Novel Screen-Printed Electrode Modified by graphene Nanocomposite for Detecting Clozapine. Int. J. Electrochem. Sci. 2020, 15, 9271–9281. [Google Scholar] [CrossRef]
Sensor Configuration | Detection Technique | Analyte | Linear Range | Detection Limit | Analyte/Sample | Ref. |
---|---|---|---|---|---|---|
COFTpTt@c-MWCNTs/SPCE | DPV | Fluoxetine | 62.5–2000 ng mL−1 | 24.3 ng mL−1 | Spiked rat serum | [110] |
SPE/SiO2/ZrO2/Cdot-N | SWV | Ceftriaxone | 0.0078–40.02 μmol L−1 | 0.2 nmol L−1 | Urine and tap water | [111] |
SPCE/MWCNT-COOH | SWV | Imatinib | 50–912 nmol L−1 | 7.0 nmol L−1 | Urine | [112] |
CuO/SPCE | DPV | Isoniazid | 4.0–200 μmol L−1 | 8.39 μmol L−1 | Pharmaceutical formulations | [113] |
MIP-Pt@g-C3N4/F-MWCNT/SPE | DPV | Tenofovir | 0.005–0.69 μmol L−1 | 0.0030 μmol L−1 | Human plasma, urine, and water | [114] |
PPyNTs/ZIF-67/SPGE | DPV | Metronidazole | 0.01–500 μmol L−1 | 0.004 μmol L−1 | Pharmaceutical formulations and urine samples | [115] |
Zn(II)-MOF/SPCE | DPV | Fentanyl | 1–100 μmol L−1 | 0.3 μmol L−1 | Urine and plasma | [116] |
C60-rGO-NF/SPE | SWV | Metronidazole | 0.25-34 µmol L−1 | 0.21 µmol L−1 | Serum and urine | [117] |
SPE | DPV | Ketamine | 50–500 µmol L−1 | 15.0 µmol L−1 | Pharmaceutical formulations and seized drugs | [118] |
PL-Dy2Ce2O7/SPE | DPV | Mesalazine | 0.02–145 µmol L−1 | 0.008 µmol L−1 | Pharmaceutical formulations, human blood serum, and urine | [119] |
SPE/rGO–NHS–AuNFs | DPV | Chloramphenicol | 0.05–100 µmol L⁻¹ | 1.0 nmol L⁻¹ | Blood serum, poultry feed, milk, eggs, honey, and powdered milk | [120] |
SPCE | SWV | Metamizole | 0.35–50 µmol L−1 | 0.09 µmol L−1 | Human urine | [121] |
MIP/SPCE | DPV | Trazodone | 5–80 µmol L−1 | 1.6 µmol L−1 | Human serum and water | [122] |
ZnO/Co3O4NC/SPE | DPV | Levodopa | 0.001–800.0 µmol L−1 | 0.81 nmol L−1 | Levodopa pills and urine | [123] |
SPE-CSS | SWV | Acetaminophen, hydroquinone | 1.5–14.0 µmol L−1 3.0–23.0 µmol L−1 | 0.85 µmol L−1 2.7 µmol L−1 | Tap water and tablets | [124] |
NPSPCE | SWV | Ciprofloxacin | 0.0005–0.03 µmol L−1 | 6.3 × 10−5 µmol L−1 | Sewage and bodily fluids | [125] |
Ce-BTC MOF/SPGE | DPV | Metronidazole | 0.05–400.0 µmol L⁻¹ | 0.02 µmol L−1 | Pharmaceutical formulations and urine | [126] |
MoS2 NSs-SPE | DPV | Isoniazid | 0.035–390.0 µmol L⁻¹ | 10.0 n mol L−1 | Pharmaceutical formulations and urine | [127] |
aSPCE | DPV | Ibuprofen | 0.50–20.0 µmol L−1 and 20.0–500.0 µmol L−1 | 0.059 µmol L−1 | Pharmaceutical formulations | [128] |
aSPCE/SDS | DPAdSV | Paracetamol, diclofenac, tramadol | 0.0149 µmol L⁻¹ 0.00021 µmol L⁻¹ 0.00171 µmol L⁻¹ | 14.87 nmol L−1 0.21 nmol L−1 1.71 nmol L−1 | River water, serum samples, and pharmaceuticals formulations | [129] |
SPCIE-TiO2 NPs | CV | Azithromycin | 0.05–50 µmol L⁻¹ | 0.93 µmol L⁻¹ | Urine and water | [130] |
SPE/MNP-TA/Ab Amx | SWV | Amoxicillin | 0.50–100 µmol L⁻¹ | 0.44 µmol L⁻¹ | Milk | [131] |
SPE-BDD | SWV | Dipyrone, norfloxacin | 2.0–250 µmol L⁻¹ 2.0–62.5 µmol L⁻¹ | 0.30 µmol L⁻¹ 0.40 µmol L⁻¹ | Water and organic fertilizers | [132] |
CB/SPE | LSV | Chloroquine | 0.5–500 µmol L−1 | 0.5 µmol L−1 | Milk | [133] |
MIP/SPCs | SWV | Irbesartan | 20–220 nmol L⁻¹ | 0.012 µmol L⁻¹ | Water | [134] |
SPCE | BIA-SWAdSV | Diazepam | 5–40 µmol L⁻¹ | 2.0 µmol L⁻¹ | Pharmaceuticals and spiked alcoholic drinks | [135] |
SPEs | POT | Metformin | 10−5–1.0 mol L−1 | 4 µmol L⁻¹ | Pharmaceutical formulations | [136] |
CoOOH-rGO/SPCE | DVP | Clonazepam | 0.1–350 µmol L⁻¹ | 5.6 µmol L⁻¹ | Drink samples | [137] |
VMSF/pSPCE | DPV | Clozapine | 0.050–20 μmol L⁻¹ | 28 nmol L⁻¹ | Human blood | [138] |
Go/Fe3O4/SiO2/SPE | DPV | Clozapine | 0.1–700.0 μmol L⁻¹ | 0.03 μmol L⁻¹ | Tablets and urine | [139] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leite, V.A.R.; Oliveira, S.P.d.; Souza, L.C.d.; Silva, L.J.d.P.; Silva, L.F.; Cândido, T.C.d.O.; Silva, D.N.d.; Pereira, A.C. Development of Novel Conductive Inks for Screen-Printed Electrochemical Sensors: Enhancing Rapid and Sensitive Drug Detection. Analytica 2025, 6, 3. https://doi.org/10.3390/analytica6010003
Leite VAR, Oliveira SPd, Souza LCd, Silva LJdP, Silva LF, Cândido TCdO, Silva DNd, Pereira AC. Development of Novel Conductive Inks for Screen-Printed Electrochemical Sensors: Enhancing Rapid and Sensitive Drug Detection. Analytica. 2025; 6(1):3. https://doi.org/10.3390/analytica6010003
Chicago/Turabian StyleLeite, Victor Alexandre Ribeiro, Sthephane Pereira de Oliveira, Larissa Cristina de Souza, Léa Júlia de Paula Silva, Laís Fonseca Silva, Thaís Cristina de Oliveira Cândido, Daniela Nunes da Silva, and Arnaldo César Pereira. 2025. "Development of Novel Conductive Inks for Screen-Printed Electrochemical Sensors: Enhancing Rapid and Sensitive Drug Detection" Analytica 6, no. 1: 3. https://doi.org/10.3390/analytica6010003
APA StyleLeite, V. A. R., Oliveira, S. P. d., Souza, L. C. d., Silva, L. J. d. P., Silva, L. F., Cândido, T. C. d. O., Silva, D. N. d., & Pereira, A. C. (2025). Development of Novel Conductive Inks for Screen-Printed Electrochemical Sensors: Enhancing Rapid and Sensitive Drug Detection. Analytica, 6(1), 3. https://doi.org/10.3390/analytica6010003