Dietary Sugars during Critical Phases of Development and Long-Term Risk of Non-Communicable Diseases
Abstract
:1. Introduction
2. Materials and Methods
3. Dietary Sugars and Pregnancy
4. Dietary Sugars and Lactation/Infancy
5. Dietary Sugars and Puberty
6. Conclusions, Future Perspectives and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Taking Action on Childhood Obesity; World Health Organization: Geneva, Switzerland, 2018; pp. 1–8. [Google Scholar]
- Ferreira, L.; Ferreira-Junior, M.; Amaral, K.; Cavalcante, K.; Pontes, C.; Ribeiro, L.; Santos, B.G.D.; Xavier, C.H.; de Freitas Mathias, P.C.; Andersen, M.L.; et al. Maternal postnatal early overfeeding induces sex-related cardiac dysfunction and alters sexually hormones levels in young offspring. J. Nutr. Biochem. 2022, 103, 108969. [Google Scholar] [CrossRef]
- Grilo, L.F.; Tocantins, C.; Diniz, M.S.; Gomes, R.M.; Oliveira, P.J.; Matafome, P.; Pereira, S.P. Metabolic Disease Programming: From Mitochondria to Epigenetics, Glucocorticoid Signalling and Beyond. Eur. J. Clin. Investig. 2021, 51, e13625. [Google Scholar] [CrossRef]
- Langley-Evans, S.C.; McMullen, S. Developmental Origins of Adult Disease. Med. Princ. Prac. 2010, 19, 87–98. [Google Scholar] [CrossRef]
- Lacagnina, S. The Developmental Origins of Health and Disease (DOHaD). Am. J. Lifestyle Med. 2020, 14, 47–50. [Google Scholar] [CrossRef]
- Menzo, E.L.; Cappellani, A.; Zanghì, A.; Di Vita, M.; Berretta, M.; Szomstein, S. Nutritional Implications of Obesity: Before and After Bariatric Surgery. Bariatr. Surg. Prac. Patient Care 2014, 9, 9–17. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Guideline: Sugars Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Wu, X.; Cui, L.; Wang, H.; Xu, J.; Zhong, Z.; Jia, X.; Wang, J.; Zhang, H.; Shi, Y.; Tang, Y.; et al. Impact of dietary sucralose and sucrose-sweetened water intake on lipid and glucose metabolism in male mice. Eur. J. Nutr. 2022, 62, 199–211. [Google Scholar] [CrossRef]
- Veit, M.; van Asten, R.; Olie, A.; Prinz, P. The role of dietary sugars, overweight, and obesity in type 2 diabetes mellitus: A narrative review. Eur. J. Clin. Nutr. 2022, 76, 1497–1501. [Google Scholar] [CrossRef]
- Aragno, M.; Mastrocola, R. Dietary Sugars and Endogenous Formation of Advanced Glycation Endproducts: Emerging Mechanisms of Disease. Nutrients 2017, 9, 385. [Google Scholar] [CrossRef] [Green Version]
- Francisco, F.A.; Saavedra, L.P.J.; Junior, M.D.F.; Barra, C.; Matafome, P.; Mathias, P.C.F.; Gomes, R.M. Early AGEing and metabolic diseases: Is perinatal exposure to glycotoxins programming for adult-life metabolic syndrome? Nutr. Rev. 2021, 79, 13–24. [Google Scholar] [CrossRef]
- Begdache, L.; Sadeghzadeh, S.; Pearlmutter, P.; Derose, G.; Krishnamurthy, P.; Koh, A. Dietary Factors, Time of the Week, Physical Fitness and Saliva Cortisol: Their Modulatory Effect on Mental Distress and Mood. Int. J. Environ. Res. Public Health 2022, 19, 7001. [Google Scholar] [CrossRef]
- Maslova, E.; Halldorsson, T.I.; Astrup, A.; Olsen, S.F. Dietary protein-to-carbohydrate ratio and added sugar as determinants of excessive gestational weight gain: A prospective cohort study. BMJ Open 2015, 5, e005839. [Google Scholar] [CrossRef] [Green Version]
- Renault, K.M.; Carlsen, E.M.; Nørgaard, K.; Nilas, L.; Pryds, O.; Secher, N.J.; Olsen, S.F.; Halldórsson, T.I. Intake of Sweets, Snacks and Soft Drinks Predicts Weight Gain in Obese Pregnant Women: Detailed Analysis of the Results of a Randomised Controlled Trial. PLoS ONE 2015, 10, e0133041. [Google Scholar] [CrossRef]
- Jen, K.-L.C.; Rochon, C.; Zhong, S.; Whitcomb, L. Fructose and Sucrose Feeding during Pregnancy and Lactation in Rats Changes Maternal and Pup Fuel Metabolism. J. Nutr. 1991, 121, 1999–2005. [Google Scholar] [CrossRef] [Green Version]
- Arima, Y.; Fukuoka, H. Developmental origins of health and disease theory in cardiology. J. Cardiol. 2020, 76, 14–17. [Google Scholar] [CrossRef]
- Munetsuna, E.; Yamada, H.; Yamazaki, M.; Ando, Y.; Mizuno, G.; Hattori, Y.; Sadamoto, N.; Ishikawa, H.; Ohta, Y.; Fujii, R.; et al. Maternal high-fructose intake increases circulating corticosterone levels via decreased adrenal corticosterone clearance in adult offspring. J. Nutr. Biochem. 2019, 67, 44–50. [Google Scholar] [CrossRef]
- Rodrigo, S.; Fauste, E.; de la Cuesta, M.; Rodríguez, L.; Álvarez-Millán, J.J.; Panadero, M.I.; Otero, P.; Bocos, C. Maternal fructose induces gender-dependent changes in both LXRα promoter methylation and cholesterol metabolism in progeny. J. Nutr. Biochem. 2018, 61, 163–172. [Google Scholar] [CrossRef]
- Rodríguez, L.; Panadero, M.I.; Roglans, N.; Otero, P.; Álvarez-Millán, J.J.; Laguna, J.C.; Bocos, C. Fructose during pregnancy affects maternal and fetal leptin signaling. J. Nutr. Biochem. 2013, 24, 1709–1716. [Google Scholar] [CrossRef]
- Vickers, M.H.; Clayton, Z.E.; Yap, C.; Sloboda, D.M. Maternal Fructose Intake during Pregnancy and Lactation Alters Placental Growth and Leads to Sex-Specific Changes in Fetal and Neonatal Endocrine Function. Endocrinology 2011, 152, 1378–1387. [Google Scholar] [CrossRef] [Green Version]
- Grove, K.L.; Grayson, B.E.; Glavas, M.M.; Xiao, X.Q.; Smith, M.S. Development of metabolic systems. Physiol. Behav. 2005, 86, 646–660. [Google Scholar] [CrossRef]
- Ahima, R.S.; Prabakaran, D.; Flier, J.S. Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function. J. Clin. Investig. 1998, 101, 1020–1027. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization; UNICEF. WHO|Global Strategy for Infant and Young Child Feeding; WHO: Geneva, Switzerland, 2017; Volume 53, pp. 1–5. Available online: http://apps.who.int/gb/archive/pdf_files/WHA54/ea54id4.pdf?ua=1&ua=1 (accessed on 1 May 2023).
- Borba, V.V.; McGonagle, D.; Shoenfeld, Y. Breastfeeding and autoimmunity: Programing health from the beginning. Am. J. Reprod. Immunol. 2018, 79, e12778. [Google Scholar] [CrossRef]
- Plagemann, A.; Harder, T.; Schellong, K.; Schulz, S.; Stupin, J.H. Early postnatal life as a critical time window for determination of long-term metabolic health. Best Prac. Res. Clin. Endocrinol. Metab. 2012, 26, 641–653. [Google Scholar] [CrossRef]
- Gomes, R.M.; Bueno, F.G.; Schamber, C.R.; de Mello, J.C.P.; de Oliveira, J.C.; Francisco, F.A.; Moreira, V.M.; Junior, M.D.F.; Pedrino, G.R.; Mathias, P.C.D.F.; et al. Maternal diet-induced obesity during suckling period programs offspring obese phenotype and hypothalamic leptin/insulin resistance. J. Nutr. Biochem. 2018, 61, 24–32. [Google Scholar] [CrossRef]
- Berger, P.K.; Plows, J.F.; Jones, R.B.; Alderete, T.L.; Rios, C.; Pickering, T.A.; Fields, D.A.; Bode, L.; Peterson, B.S.; Goran, M.I. Associations of maternal fructose and sugar-sweetened beverage and juice intake during lactation with infant neurodevelopmental outcomes at 24 months. Am. J. Clin. Nutr. 2020, 112, 1516–1522. [Google Scholar] [CrossRef]
- Francisco, F.A.; Barella, L.F.; Silveira, S.D.S.; Saavedra, L.P.J.; Prates, K.V.; Alves, V.S.; Franco, C.C.D.S.; Miranda, R.A.; Ribeiro, T.A.; Tófolo, L.P.; et al. Methylglyoxal treatment in lactating mothers leads to type 2 diabetes phenotype in male rat offspring at adulthood. Eur. J. Nutr. 2018, 57, 477–486. [Google Scholar] [CrossRef]
- Peppa, M.; He, C.; Hattori, M.; McEvoy, R.; Zheng, F.; Vlassara, H. Fetal or Neonatal Low-Glycotoxin Environment Prevents Autoimmune Diabetes in NOD Mice. Diabetes 2003, 52, 1441–1448. [Google Scholar] [CrossRef] [Green Version]
- Rose, C.; Birch, L.L.; Savage, J.S. Dietary patterns in infancy are associated with child diet and weight outcomes at 6 years. Int. J. Obes. 2017, 41, 783–788. [Google Scholar] [CrossRef]
- Weijs, P.J.; Kool, L.M.; van Baar, N.M.; van der Zee, S.C. High beverage sugar as well as high animal protein intake at infancy may increase overweight risk at 8 years: A prospective longitudinal pilot study. Nutr. J. 2011, 10, 95. [Google Scholar] [CrossRef] [Green Version]
- Tohi, M.; Bay, J.L.; Tu’akoi, S.; Vickers, M.H. The Developmental Origins of Health and Disease: Adolescence as a Critical Lifecourse Period to Break the Transgenerational Cycle of NCDs—A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 6024. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025, 9th ed.; U.S. Department of Health and Human Services: Washington, DC, USA, 2020.
- Harrell, C.; Zainaldin, C.; McFarlane, D.; Hyer, M.; Stein, D.; Sayeed, I.; Neigh, G. High-fructose diet during adolescent development increases neuroinflammation and depressive-like behavior without exacerbating outcomes after stroke. Brain Behav. Immun. 2018, 73, 340–351. [Google Scholar] [CrossRef]
- Béghin, L.; Huybrechts, I.; Drumez, E.; Kersting, M.; Walker, R.W.; Kafatos, A.; Molnar, D.; Manios, Y.; Moreno, L.A.; De Henauw, S.; et al. High Fructose Intake Contributes to Elevated Diastolic Blood Pressure in Adolescent Girls: Results from The HELENA Study. Nutrients 2021, 13, 3608. [Google Scholar] [CrossRef]
- Schwimmer, J.B.; Ugalde-Nicalo, P.; Welsh, J.A.; Angeles, J.E.; Cordero, M.; Harlow, K.E.; Alazraki, A.; Durelle, J.; Knight-Scott, J.; Newton, K.P.; et al. Effect of a Low Free Sugar Diet vs Usual Diet on Nonalcoholic Fatty Liver Disease in Adolescent Boys. JAMA 2019, 321, 256–265. [Google Scholar] [CrossRef] [Green Version]
- Welsh, J.A.; Sharma, A.; Cunningham, S.; Vos, M.B. Consumption of Added Sugars and Indicators of Cardiovascular Disease Risk Among US Adolescents. Circulation 2011, 123, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, L.A.; Madsen, K.A.; Cotterman, C.; Lustig, R.H. Added sugar intake and metabolic syndrome in US adolescents: Cross-sectional analysis of the National Health and Nutrition Examination Survey 2005–2012. Public Health Nutr. 2016, 19, 2424–2434. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira-Junior, M.D.; Cavalcante, K.V.N.; Mota, A.P.C.d.; Gomes, R.M. Dietary Sugars during Critical Phases of Development and Long-Term Risk of Non-Communicable Diseases. Diabetology 2023, 4, 243-250. https://doi.org/10.3390/diabetology4030021
Ferreira-Junior MD, Cavalcante KVN, Mota APCd, Gomes RM. Dietary Sugars during Critical Phases of Development and Long-Term Risk of Non-Communicable Diseases. Diabetology. 2023; 4(3):243-250. https://doi.org/10.3390/diabetology4030021
Chicago/Turabian StyleFerreira-Junior, Marcos Divino, Keilah Valéria Naves Cavalcante, Ariel Penha Carvalho da Mota, and Rodrigo Mello Gomes. 2023. "Dietary Sugars during Critical Phases of Development and Long-Term Risk of Non-Communicable Diseases" Diabetology 4, no. 3: 243-250. https://doi.org/10.3390/diabetology4030021
APA StyleFerreira-Junior, M. D., Cavalcante, K. V. N., Mota, A. P. C. d., & Gomes, R. M. (2023). Dietary Sugars during Critical Phases of Development and Long-Term Risk of Non-Communicable Diseases. Diabetology, 4(3), 243-250. https://doi.org/10.3390/diabetology4030021