Evaluation of Insulin Secretion and Continuous Glucose Monitoring in Patients with Cystic Fibrosis After Initiation of Transmembrane Conductance Regulator Modulator: A 52-Week Prospective Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Design of the Study and Patient Selection
2.2. Clinical Parameters and Laboratory Measures
2.3. Ethical Considerations
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. OGTT Results for Glucose and Insulin Secretion
3.3. CGM Parameters and A1c
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fonseca, C.; Bicker, J.; Alves, G.; Falcão, A.; Fortuna, A. Cystic fibrosis: Physiopathology and the latest pharmacological treatments. Pharmacol. Res. 2020, 162, 105267. [Google Scholar] [CrossRef] [PubMed]
- Boudreau, V.; Reynaud, Q.; Dubois, C.L.; Coriati, A.; Desjardins, K.; Durieu, I.; Rabasa-Lhoret, R. Screening for Cystic Fibrosis-Related Diabetes: Matching Pathophysiology and Addressing Current Challenges. Can. J. Diabetes 2016, 40, 466–470. [Google Scholar] [CrossRef] [PubMed]
- Boudreau, V.; Coriati, A.; Hammana, I.; Ziai, S.; Desjardins, K.; Berthiaume, Y.; Rabasa-Lhoret, R. Variation of glucose tolerance in adult patients with cystic fibrosis: What is the potential contribution of insulin sensitivity? J. Cyst. Fibros. 2016, 15, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Putman, M.S.; Norris, A.W.; Hull, R.L.; Rickels, M.R.; Sussel, L.; Blackman, S.M.; Chan, C.L.; Ode, K.L.; Daley, T.; Stecenko, A.A.; et al. Cystic Fibrosis-Related Diabetes Workshop: Research Priorities Spanning Disease Pathophysiology, Diagnosis, and Outcomes. Diabetes 2023, 72, 677–689. [Google Scholar] [CrossRef]
- Moran, A.; Becker, D.; Casella, S.J.; Gottlieb, P.A.; Kirkman, M.S.; Marshall, B.C.; Slovis, B. Epidemiology, pathophysiology, and prognostic implications of cystic fibrosis-related diabetes: A technical review. Diabetes Care 2010, 33, 2677–2683. [Google Scholar] [CrossRef]
- Moran, A.; Brunzell, C.; Cohen, R.C.; Katz, M.; Marshall, B.C.; Onady, G.; Robinson, K.A.; Sabadosa, K.A.; Stecenko, A.; Slovis, B. Clinical care guidelines for cystic fibrosis-related diabetes: A position statement of the American Diabetes Association and a clinical practice guideline of the Cystic Fibrosis Foundation, endorsed by the Pediatric Endocrine Society. Diabetes Care 2010, 33, 2697–2708. [Google Scholar] [CrossRef]
- Farrell, P.M. The prevalence of cystic fibrosis in the European Union. J. Cyst. Fibros. 2008, 7, 450–453. [Google Scholar] [CrossRef]
- Clancy, J.P.; Cotton, C.U.; Donaldson, S.H.; Solomon, G.M.; VanDevanter, D.R.; Boyle, M.P.; Gentzsch, M.; Nick, J.A.; Illek, B.; Wallenburg, J.C.; et al. CFTR modulator theratyping: Current status, gaps and future directions. J. Cyst. Fibros. 2019, 18, 22–34. [Google Scholar] [CrossRef]
- Eckford, P.D.; Li, C.; Ramjeesingh, M.; Bear, C.E. Cystic fibrosis transmembrane conductance regulator (CFTR) potentiator VX-770 (ivacaftor) opens the defective channel gate of mutant CFTR in a phosphorylation-dependent but ATP-independent manner. J. Biol. Chem. 2012, 287, 36639–36649. [Google Scholar] [CrossRef]
- Volkova, N.; Moy, K.; Evans, J.; Campbell, D.; Tian, S.; Simard, C.; Higgins, M.; Konstan, M.W.; Sawicki, G.S.; Elbert, A.; et al. Disease progression in patients with cystic fibrosis treated with ivacaftor: Data from national US and UK registries. J. Cyst. Fibros. 2020, 19, 68–79. [Google Scholar] [CrossRef]
- Cutting, G.R. Cystic fibrosis genetics: From molecular understanding to clinical application. Nat. Rev. Genet. 2015, 16, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Merjaneh, L.; Hasan, S.; Kasim, N.; Ode, K.L. The role of modulators in cystic fibrosis related diabetes. J. Clin. Transl. Endocrinol. 2022, 27, 100286. [Google Scholar] [CrossRef] [PubMed]
- Bellin, M.D.; Laguna, T.; Leschyshyn, J.; Regelmann, W.; Dunitz, J.; Billings, J.; Moran, A. Insulin secretion improves in cystic fibrosis following ivacaftor correction of CFTR: A small pilot study. Pediatr. Diabetes 2013, 14, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.L.; Granados, A.; Moheet, A.; Singh, S.; Vigers, T.; Arbeláez, A.M.; Yi, Y.; Hu, S.; Norris, A.W.; Ode, K.L. Glycemia and β-cell function before and after elexacaftor/tezacaftor/ivacaftor in youth and adults with cystic fibrosis. J. Clin. Transl. Endocrinol. 2022, 30, 100311. [Google Scholar] [CrossRef]
- Colombo, C.; Foppiani, A.; Bisogno, A.; Gambazza, S.; Daccò, V.; Nazzari, E.; Leone, A.; Giana, A.; Mari, A.; Battezzati, A. Lumacaftor/ivacaftor in cystic fibrosis: Effects on glucose metabolism and insulin secretion. J. Endocrinol. Investig. 2021, 44, 2213–2218. [Google Scholar] [CrossRef]
- Crow, H.; Bengtson, C.; Shi, X.; Graves, L., 3rd; Anabtawi, A. CGM patterns in adults with cystic fibrosis-related diabetes before and after elexacaftor-tezacaftor-ivacaftor therapy. J. Clin. Transl. Endocrinol. 2022, 30, 100307. [Google Scholar] [CrossRef]
- Dagan, A.; Cohen-Cymberknoh, M.; Shteinberg, M.; Levine, H.; Vilozni, D.; Bezalel, Y.; Bar Aluma, B.E.; Sarouk, I.; Ashkenazi, M.; Lavie, M.; et al. Ivacaftor for the p.Ser549Arg (S549R) gating mutation—The Israeli experience. Respir. Med. 2017, 131, 225–228. [Google Scholar] [CrossRef]
- Gaines, H.; Jones, K.R.; Lim, J.; Medhi, N.F.; Chen, S.; Scofield, R.H. Effect of CFTR modulator therapy on cystic fibrosis-related diabetes. J. Diabetes Complicat. 2021, 35, 107845. [Google Scholar] [CrossRef]
- Hayes, D., Jr.; McCoy, K.S.; Sheikh, S.I. Resolution of cystic fibrosis-related diabetes with ivacaftor therapy. Am. J. Respir. Crit. Care Med. 2014, 190, 590–591. [Google Scholar] [CrossRef]
- Kelly, A.; De Leon, D.D.; Sheikh, S.; Camburn, D.; Kubrak, C.; Peleckis, A.J.; Stefanovski, D.; Hadjiliadis, D.; Rickels, M.R.; Rubenstein, R.C. Islet Hormone and Incretin Secretion in Cystic Fibrosis after Four Months of Ivacaftor Therapy. Am. J. Respir. Crit. Care Med. 2019, 199, 342–351. [Google Scholar] [CrossRef]
- Misgault, B.; Chatron, E.; Reynaud, Q.; Touzet, S.; Abely, M.; Melly, L.; Dominique, S.; Troussier, F.; Ronsin-Pradel, O.; Gerardin, M.; et al. Effect of one-year lumacaftor-ivacaftor treatment on glucose tolerance abnormalities in cystic fibrosis patients. J. Cyst. Fibros. 2020, 19, 712–716. [Google Scholar] [CrossRef] [PubMed]
- Moheet, A.; Beisang, D.; Zhang, L.; Sagel, S.D.; VanDalfsen, J.M.; Heltshe, S.L.; Frederick, C.; Mann, M.; Antos, N.; Billings, J.; et al. Lumacaftor/ivacaftor therapy fails to increase insulin secretion in F508del/F508del CF patients. J. Cyst. Fibros. 2021, 20, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Mutyam, V.; Libby, E.F.; Peng, N.; Hadjiliadis, D.; Bonk, M.; Solomon, G.M.; Rowe, S.M. Therapeutic benefit observed with the CFTR potentiator, ivacaftor, in a CF patient homozygous for the W1282X CFTR nonsense mutation. J. Cyst. Fibros. 2017, 16, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.C.; Begnel, L.; Wallendorf, M.; Litvin, M. Effect of elexacaftor-tezacaftor-ivacaftor on body weight and metabolic parameters in adults with cystic fibrosis. J. Cyst. Fibros. 2022, 21, 265–271. [Google Scholar] [CrossRef]
- Piona, C.; Mozzillo, E.; Tosco, A.; Volpi, S.; Rosanio, F.M.; Cimbalo, C.; Franzese, A.; Raia, V.; Zusi, C.; Emiliani, F.; et al. Impact of CFTR Modulators on Beta-Cell Function in Children and Young Adults with Cystic Fibrosis. J. Clin. Med. 2022, 11, 4149. [Google Scholar] [CrossRef]
- Scully, K.J.; Marchetti, P.; Sawicki, G.S.; Uluer, A.; Cernadas, M.; Cagnina, R.E.; Kennedy, J.C.; Putman, M.S. The effect of elexacaftor/tezacaftor/ivacaftor (ETI) on glycemia in adults with cystic fibrosis. J. Cyst. Fibros. 2022, 21, 258–263. [Google Scholar] [CrossRef]
- Steinack, C.; Ernst, M.; Beuschlein, F.; Hage, R.; Roeder, M.; Schuurmans, M.M.; Schmid, C.; Gaisl, T. Improved glucose tolerance after initiation of Elexacaftor/Tezacaftor/Ivacaftor in adults with cystic fibrosis. J. Cyst. Fibros. 2023, 22, 722–729. [Google Scholar] [CrossRef]
- Thomassen, J.C.; Mueller, M.I.; Alejandre Alcazar, M.A.; Rietschel, E.; van Koningsbruggen-Rietschel, S. Effect of Lumacaftor/Ivacaftor on glucose metabolism and insulin secretion in Phe508del homozygous cystic fibrosis patients. J. Cyst. Fibros. 2018, 17, 271–275. [Google Scholar] [CrossRef]
- Tsabari, R.; Elyashar, H.I.; Cymberknowh, M.C.; Breuer, O.; Armoni, S.; Livnat, G.; Kerem, E.; Zangen, D.H. CFTR potentiator therapy ameliorates impaired insulin secretion in CF patients with a gating mutation. J. Cyst. Fibros. 2016, 15, e25–e27. [Google Scholar] [CrossRef]
- Miller, M.R.; Crapo, R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. General considerations for lung function testing. Eur. Respir. J. 2005, 26, 153–161. [Google Scholar] [CrossRef]
- Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.; Zheng, J.; et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: The global lung function 2012 equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Gautier, J.F.; Chon, S. Assessment of Insulin Secretion and Insulin Resistance in Human. Diabetes Metab. J. 2021, 45, 641–654. [Google Scholar] [CrossRef] [PubMed]
- Elder, D.A.; Wooldridge, J.L.; Dolan, L.M.; D’Alessio, D.A. Glucose tolerance, insulin secretion, and insulin sensitivity in children and adolescents with cystic fibrosis and no prior history of diabetes. J. Pediatr. 2007, 151, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Radaelli, T.; Farrell, K.A.; Huston-Presley, L.; Amini, S.B.; Kirwan, J.P.; McIntyre, H.D.; Catalano, P.M. Estimates of insulin sensitivity using glucose and C-Peptide from the hyperglycemia and adverse pregnancy outcome glucose tolerance test. Diabetes Care 2010, 33, 490–494. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and ?-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Moran, A.; Pillay, K.; Becker, D.; Granados, A.; Hameed, S.; Acerini, C.L. ISPAD Clinical Practice Consensus Guidelines 2018: Management of cystic fibrosis-related diabetes in children and adolescents. Pediatr Diabetes 2018, 19 (Suppl. 27), 64–74. [Google Scholar] [CrossRef]
- Hart, N.J.; Aramandla, R.; Poffenberger, G.; Fayolle, C.; Thames, A.H.; Bautista, A.; Spigelman, A.F.; Babon, J.A.B.; DeNicola, M.E.; Dadi, P.K.; et al. Cystic fibrosis-related diabetes is caused by islet loss and inflammation. JCI Insight 2018, 3, 19. [Google Scholar] [CrossRef]
- Guo, J.H.; Chen, H.; Ruan, Y.C.; Zhang, X.L.; Zhang, X.H.; Fok, K.L.; Tsang, L.L.; Yu, M.K.; Huang, W.Q.; Sun, X.; et al. Glucose-induced electrical activities and insulin secretion in pancreatic islet β-cells are modulated by CFTR. Nat. Commun. 2014, 5, 4420. [Google Scholar] [CrossRef]
- Edlund, A.; Esguerra, J.L.; Wendt, A.; Flodström-Tullberg, M.; Eliasson, L. CFTR and Anoctamin 1 (ANO1) contribute to cAMP amplified exocytosis and insulin secretion in human and murine pancreatic beta-cells. BMC Med. 2014, 12, 87. [Google Scholar] [CrossRef]
- Ntimbane, T.; Mailhot, G.; Spahis, S.; Rabasa-Lhoret, R.; Kleme, M.L.; Melloul, D.; Brochiero, E.; Berthiaume, Y.; Levy, E. CFTR silencing in pancreatic β-cells reveals a functional impact on glucose-stimulated insulin secretion and oxidative stress response. Am. J. Physiol. Endocrinol. Metab. 2016, 310, E200–E212. [Google Scholar] [CrossRef]
- Ode, K.L.; Moran, A. New insights into cystic fibrosis-related diabetes in children. Lancet Diabetes Endocrinol. 2013, 1, 52–58. [Google Scholar] [CrossRef] [PubMed]
Variable | Total (n = 25) | Adults (n = 11) | Pediatrics (n = 14) |
---|---|---|---|
Demographics | |||
Age (years) | 16 (35) | 38 ± 13 | 10 ± 4 |
Men (n, %) | 13 (57) | 6 (54) | 7 (50) |
BMI z-score * | - | NA | −0.6 (0.5) |
Homozygous F508del (n, %) | 19 (76) | 6 (55) | 13 (93) |
Glucose tolerance status (n, %) | |||
NGT | 2 (8) | 2 (18) | 0 (0) |
INDET | 8 (32) | 2 (18) | 6 (43) |
IGT | 10 (40) | 3 (27) | 7 (50) |
CFRD | 5 (20) | 4 (36) | 1 (7) |
Insulin treatment (n, %) | 5 (20) | 4 (36) | 1 (7) |
A1c (%) ¶ | - | 5.85 ± 0.55 | NA |
FEV1 (%) | 81 (31) | 66 ± 21 | 88 ± 11 |
Pancreatic insufficient | 22 (88) | 8 (73) | 14 (100) |
Outcome | Baseline | 24 Weeks | 52 Weeks | Mixed Model Coefficient (95% CI) | p Value |
---|---|---|---|---|---|
Fasting glucose (mg/dL) | 94 (16) | 94 (10) | 95 (14) | 0.002 (−0.086, 0.089) | 0.972 |
1 h OGTT glucose (mg/dL) | 196 (60) | 220 (90) | 236 (103) | 0.079 (−0.317, 0.474) | 0.697 |
2 h OGTT glucose (mg/dL) | 150 (90) | 157 (88) | 147 (84) | −0.188 (−0.562, 0.186) | 0.325 |
Glucose AUC (mg/dL) | 8888 (6975) | 12,045 (6435) | 9180 (8190) | 3.040 (−25.907, 31.986) | 0.837 |
Fasting C peptide (ng/mL) | 0.72 (0.67) | 1.01 (0.47) | 1.01 (0.53) | 0.001 (−0.002, 0.004) | 0.588 |
C peptide AUC (ng/mL) | 325 (196) | 370 (299) | 345 (176) | 0.281 (−1.139, 1.701) | 0.698 |
Insulin AUC (µUI/mL) | 2246 (1988) | 2417 (2819) | 2010 (1815) | 3.989 (−13.347, 21.325) | 0.652 |
HOMA-IR (pmol/L × mol/L) | 0.86 (0.79) | 1.06 (0.73) | 1.33 (0.89) | 0.072 (−0.008, 0.153) | 0.077 |
A1c (%) ¶ | 5.9 (0.4) | 5.6 (1.1) | NA | −0.009 (−0.020, 0.002) | 0.108 |
Outcome | Baseline | 24 Weeks | 52 Weeks | p | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NGT | INDET | IGT | CFRD | NGT | INDET | IGT | CFRD | NGT | INDET | IGT | CFRD | ||
Glucose AUC (mg/dL) e, f, g | 2948 (1983) | 6617 (1672) | 10667 (2834) | 16272 (4900) | 2813 (456) | 9527 (3987) | 11718 (3788) | 13269 (2052) | 2295 (870) | 7635 (1938) | 10565 (3996) | 16044 (5054) | 0.046 |
C peptide AUC (ng/mL) | 474 (59) | 411 (275) | 394 (161) | 182 (145) | 569 (26) | 520 (317) | 438 (165) | 209 (165) | 573 (82) | 442 (277) | 401 (154) | 252 (120) | NS |
Insulin AUC (µUI/mL) | 3364 (71) | 3206 (3487) | 3085 (1650) | 1589 (820) | 3319 (438) | 4292 (4429) | 3727 (2104) | 1723 (944) | 3491 (109) | 3521 (3629) | 3238 (2024) | 2451 (3030) | NS |
ISR60 b,c,d,e,f | 1.59 (1.01) | 0.43 (0.36) | 0.24 (0.16) | 0.82 (0.56) | 1.18 (0.04) | 0.38 (0.38) | 0.29 (0.24) | 0.10 (0.06) | 2.53 (0.32) | 0.41 (0.36) | 0.26 (0.13) | 0.24 (0.37) | <0.001 |
HOMA-IR (pmol/L × mmol/L) b,c,f,g | 0.83 (0.08) | 0.73 (0.24) | 1.30 (0.54) | 1.15 (0.66) | 1.26 (0.32) | 0.86 (0.34) | 1.62 (0.80) | 1.27 (0.34) | 0.81 (0.11) | 0.82 (0.33) | 1.50 (0.79) | 10.50 (26.38) | 0.003 |
Insulinogenic index | 0.84 (0.47) | 0.28 (0.22) | 0.21 (0.11) | 0.13 (0.15) | 0.76 (0.04) | 0.25 (0.25) | 0.23 (0.16) | 0.13 (0.10) | 0.84 (0.50) | 0.28 (0.22) | 0.27 (0.76) | 0.20 (0.28) | NS |
Fasting glucose (mg/dL) d,e,f,g,h | 70 (5) | 91 (5) | 93 (9) | 104 (15) | 84 (5) | 89 (6) | 93 (4) | 109 (8) | 76 (4) | 92 (7) | 94 (8) | 97 (10) | 0.003 |
TIR 70–180 (%) | 97 (3) | 96 (6) | 93 (5) | 85 (13) | 96 (5) | 92 (10) | 91 (8) | 88 (9) | 99 (1) | 97 (6) | 96 (3) | 88 (7) | NS |
Mean glucose (mg/dL) c,f | 95 (2) | 103 (6) | 108 (12) | 110 (13) | 95 (3) | 97 (8) | 101 (11) | 125 (20) | 89 (6) | 106 (8) | 112 (7) | 122 (19) | 0.004 |
GMI (%) | 5.6 (0.1) | 5.7 (0.1) | 5.8 (0.4) | 6.0 (0.4) | 5.4 (0.1) | 5.6 (0.1) | 5.7 (0.4) | 6.3 (0.5) | 5.6 (0.1) | 5.8 (0.2) | 6.0 (0.2) | 6.3 (0.4) | NS |
TAR > 180 (%) f,g,h | 0.0 (0.0) | 0.8 (0.8) | 3.6 (3.8) | 12.3 (9.2) | 0.0 (0.0) | 0.8 (0.9) | 2.2 (2.2) | 13 (12) | 0.0 (0.0) | 1.0 (1.1) | 3.3 (2.1) | 13.3 (9.5) | 0.001 |
TBR < 70 (%) | 3.0 (2.8) | 2.0 (1.4) | 4.3 (3.3) | 8.0 (9.3) | 5.0 (4.2) | 9.0 (12.1) | 8.0 (9.4) | 1.5 (2.3) | 1.5 (0.7) | 0.3 (0.5) | 0.5 (0.8) | 1.0 (1.4) | NS |
SD (mg/dL) f,g | 14 (4) | 22 (5) | 28 (8) | 34 (7) | 10 (4) | 22 (5) | 26 (8) | 35 (9) | 11 (5) | 22 (5) | 27 (6) | 36 (13) | 0.004 |
CV (%) f | 14 (3) | 22 (5) | 25 (7) | 31 (5) | 12 (5) | 23 (6) | 26 (7) | 29 (4) | 12 (5) | 21 (6) | 24 (5) | 29 (7) | 0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayona, A.; Lecumberri Pascual, E.; Vicente, S.; Maíz, L.; Morales, A.; Lamas, A.; Sánchez Rodríguez, C.; Yelmo, R.; Martín-Frías, M.; Martínez Vaello, V.; et al. Evaluation of Insulin Secretion and Continuous Glucose Monitoring in Patients with Cystic Fibrosis After Initiation of Transmembrane Conductance Regulator Modulator: A 52-Week Prospective Study. Diabetology 2024, 5, 554-565. https://doi.org/10.3390/diabetology5060040
Bayona A, Lecumberri Pascual E, Vicente S, Maíz L, Morales A, Lamas A, Sánchez Rodríguez C, Yelmo R, Martín-Frías M, Martínez Vaello V, et al. Evaluation of Insulin Secretion and Continuous Glucose Monitoring in Patients with Cystic Fibrosis After Initiation of Transmembrane Conductance Regulator Modulator: A 52-Week Prospective Study. Diabetology. 2024; 5(6):554-565. https://doi.org/10.3390/diabetology5060040
Chicago/Turabian StyleBayona, Ane, Edurne Lecumberri Pascual, Saioa Vicente, Luis Maíz, Ana Morales, Adelaida Lamas, Cristina Sánchez Rodríguez, Rosa Yelmo, María Martín-Frías, Victoria Martínez Vaello, and et al. 2024. "Evaluation of Insulin Secretion and Continuous Glucose Monitoring in Patients with Cystic Fibrosis After Initiation of Transmembrane Conductance Regulator Modulator: A 52-Week Prospective Study" Diabetology 5, no. 6: 554-565. https://doi.org/10.3390/diabetology5060040
APA StyleBayona, A., Lecumberri Pascual, E., Vicente, S., Maíz, L., Morales, A., Lamas, A., Sánchez Rodríguez, C., Yelmo, R., Martín-Frías, M., Martínez Vaello, V., Blitz Castro, E., & Nattero-Chávez, L. (2024). Evaluation of Insulin Secretion and Continuous Glucose Monitoring in Patients with Cystic Fibrosis After Initiation of Transmembrane Conductance Regulator Modulator: A 52-Week Prospective Study. Diabetology, 5(6), 554-565. https://doi.org/10.3390/diabetology5060040