Temperature Cycle-Induced Deracemization of Cl-TAK Using Amberlyst A26: A Heterogeneous Catalyst Approach for Efficient and Reusable Racemization †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Racemization Rates
2.2. Testing for Residual Catalytic Activity After the Removal of Amberlyst A26
2.3. TCID Experiments
2.3.1. Temperature Cycle
2.3.2. Sampling
2.4. Analysis Techniques
3. Results
3.1. Racemization Rates
3.2. Testing for Residual Catalytic Activity After the Removal of Amberlyst A26
3.3. TCID Experiments with Amberlyst A26
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rekoske, J.E. Chiral separations. AIChE J. 2001, 47, 2. [Google Scholar] [CrossRef]
- Beesley, T.E.; Scott, R.P. Chiral Chromatography; John Wiley & Sons: Oxford, UK, 1999. [Google Scholar]
- Chandarana, C.V.; Rejji, J. Chiral chromatography and determination of chiral molecules: Past, present, and future perspectives. J. Anal. Chem. 2023, 78, 267–293. [Google Scholar] [CrossRef]
- Critto, E.F.; Giovannoni, S.; Lancioni, C.; Castells, C.B. Enantioseparation of agrochemicals by gas chromatography. Exploring columns based on cyclodextrin derivatives dissolved into polysiloxanes. J. Sep. Sci. 2024, 47, 2300804. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, O.; Horáková, E.; Rademacherová, S.; Maliňák, D.; Andrýs, R.; Prchalová, E.; Lísa, M. Direct Chiral Supercritical Fluid Chromatography–Mass Spectrometry Analysis of Monoacylglycerol and Diacylglycerol Isomers for the Study of Lipase-Catalyzed Hydrolysis of Triacylglycerols. Anal. Chem. 2023, 95, 5109–5116. [Google Scholar] [CrossRef]
- Betzenbichler, G.; Huber, L.; Kräh, S.; Morkos, M.-L.K.; Siegle, A.F.; Trapp, O. Chiral stationary phases and applications in gas chromatography. Chirality 2022, 34, 732–759. [Google Scholar] [CrossRef]
- Ali, I.; Alam, S.D.; Raja, R.; Shirsath, V.S.; Jain, A.K.; Yusuf, K.; Aljuwayid, A.m.; Sillanpää, M.A. Chiral separation of β-blockers by supercritical fluid chromatography using Chiralpak-IG and Chiralpak IBN-5 columns. Chirality 2022, 34, 848–855. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Wang, K.; Tang, T.; Fang, J.; Chen, Y. Development of a chiral HPLC method for the separation and quantification of hydroxychloroquine enantiomers. Sci. Rep. 2021, 11, 8017. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.-M.; Chen, X.-X.; Zhang, J.-H.; Yuan, L.-M. Gas chromatographic separation of enantiomers on novel chiral stationary phases. Trends Anal. Chem. 2020, 124, 115808. [Google Scholar] [CrossRef]
- Galietti, M.R.; Peulon-Agasse, V.; Cardinael, P.; Fogwill, M.O.; Besner, S.; Gritti, F.G. Turbulent Supercritical Fluid Chromatography in Open-Tubular Columns for High-Throughput Separations. Anal. Chem. 2020, 92, 7409–7412. [Google Scholar] [CrossRef]
- Akiyama, T.; Ojima, I. Catalytic Asymmetric Synthesis; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Zhang, X.-J.; Cheng, Y.-M.; Zhao, X.-W.; Cao, Z.-Y.; Xiao, X.; Xu, Y. Catalytic asymmetric synthesis of monofluoroalkenes and gem-difluoroalkenes: Advances and perspectives. Org. Chem. Front. 2021, 8, 2315–2327. [Google Scholar] [CrossRef]
- Sartori Karine, S.; Miranda Luzia, I.; Diaz Alves Nogueira, M.; Diaz-Muñoz, G. Sharpless Asymmetric Epoxidation: Applications in the Synthesis of Bioactive Natural Products. Mini-Rev. Org. Chem. 2021, 18, 606–620. [Google Scholar] [CrossRef]
- Gawley, R.E.; Aubé, J. Principles of Asymmetric Synthesis; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Farina, V.; Reeves, J.T.; Senanayake, C.H.; Song, J.J. Asymmetric synthesis of active pharmaceutical ingredients. Chem. Rev. 2006, 106, 2734–2793. [Google Scholar] [CrossRef]
- Rehman, G.u.; Vetter, T.; Martin, P.A. Investigation of Temperature Cycling with Coupled Vessels for Efficient Deracemization of NMPA. Cryst. Growth Des. 2023, 23, 5428–5436. [Google Scholar] [CrossRef]
- Bodák, B.; Mazzotti, M. Solid-State Deracemization via Temperature Cycles in Continuous Operation: Model-Based Process Design. Cryst. Growth Des. 2022, 22, 1846–1856. [Google Scholar] [CrossRef] [PubMed]
- Intaraboonrod, K.; Harriehausen, I.; Carneiro, T.; Seidel-Morgenstern, A.; Lorenz, H.; Flood, A.E. Temperature Cycling Induced Deracemization of dl-Asparagine Monohydrate with Immobilized Amino Acid Racemase. Cryst. Growth Des. 2021, 21, 306–313. [Google Scholar] [CrossRef]
- Intaraboonrod, K.; Lerdwiriyanupap, T.; Hoquante, M.; Coquerel, G.; Flood, A.E. Temperature cycle induced deracemization. Mendeleev Commun. 2020, 30, 395–405. [Google Scholar] [CrossRef]
- Breveglieri, F.; Baglai, I.; Leeman, M.; Noorduin, W.L.; Kellogg, R.M.; Mazzotti, M. Performance Analysis and Model-Free Design of Deracemization via Temperature Cycles. Org. Process Res. Dev. 2020, 24, 1515–1522. [Google Scholar] [CrossRef]
- Breveglieri, F.; Maggioni, G.M.; Mazzotti, M. Deracemization of NMPA via Temperature Cycles. Cryst. Growth Des. 2018, 18, 1873–1881. [Google Scholar] [CrossRef]
- Maeda, J.; Cardinael, P.; Flood, A.; Coquerel, G. Improved Experimental Yield of Temperature-Cycle-Induced Deracemization (TCID) with Cooling and Crystal Washing: Application of TCID for the Industrial Scale. Crystals 2024, 14, 588. [Google Scholar] [CrossRef]
- Belletti, G.; Tortora, C.; Mellema, I.D.; Tinnemans, P.; Meekes, H.; Rutjes, F.P.J.T.; Tsogoeva, S.B.; Vlieg, E. Photoracemization-Based Viedma Ripening of a BINOL Derivative. Chem. Eur. J. 2020, 26, 839–844. [Google Scholar] [CrossRef]
- Sögütoglu, L.-C.; Steendam, R.R.E.; Meekes, H.; Vlieg, E.; Rutjes, F.P.J.T. Viedma ripening: A reliable crystallisation method to reach single chirality. Chem. Soc. Rev. 2015, 44, 6723–6732. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, D.T.; Nguyen, T.P.T.; Mengnjo, L.; Bian, C.; Leung, Y.H.; Goodfellow, E.; Ramrup, P.; Woo, S.; Cuccia, L.A. Viedma Ripening of Conglomerate Crystals of Achiral Molecules Monitored Using Solid-State Circular Dichroism. Cryst. Growth Des. 2014, 14, 1067–1076. [Google Scholar] [CrossRef]
- Iggland, M.; Müller, R.; Mazzotti, M. On the Effect of Initial Conditions in Viedma Ripening. Cryst. Growth Des. 2014, 14, 2488–2493. [Google Scholar] [CrossRef]
- Viedma, C. Chiral symmetry breaking and complete chiral purity by thermodynamic-kinetic feedback near equilibrium: Implications for the origin of biochirality. Astrobiology 2007, 7, 312–319. [Google Scholar] [CrossRef]
- Kovács, E.A.; Szilágyi, B. A synthetic machine learning framework for complex crystallization processes: The case study of the second-order asymmetric transformation of enantiomers. J. Chem. Eng. 2023, 465, 142800. [Google Scholar] [CrossRef]
- Oketani, R.; Marin, F.; Tinnemans, P.; Hoquante, M.; Laurent, A.; Brandel, C.; Cardinael, P.; Meekes, H.; Vlieg, E.; Geerts, Y.; et al. Deracemization in a Complex Quaternary System with a Second-Order Asymmetric Transformation by Using Phase Diagram Studies. Chem. Eur. J. 2019, 25, 13890–13898. [Google Scholar] [CrossRef]
- Oketani, R.; Hoquante, M.; Brandel, C.; Cardinael, P.; Coquerel, G. Resolution of an Atropisomeric Naphthamide by Second-Order Asymmetric Transformation: A Highly Productive Technique. Org. Process Res. Dev. 2019, 23, 1197–1203. [Google Scholar] [CrossRef]
- Oketani, R.; Hoquante, M.; Brandel, C.; Cardinael, P.; Coquerel, G. Practical Role of Racemization Rates in Deracemization Kinetics and Process Productivities. Cryst. Growth Des. 2018, 18, 6417–6420. [Google Scholar] [CrossRef]
- Gonawan, F.N.; Sie Yon, L.; Kamaruddin, A.H.; Uzir, M.H. Rapid Base-Catalyzed Racemization of (R)-Ibuprofen Ester in Isooctane–Dimethyl Sulfoxide Medium with Improved Kinetic Model. Ind. Eng. Chem. Res. 2014, 53, 635–642. [Google Scholar] [CrossRef]
- Rougeot, C.; Guillen, F.; Plaquevent, J.-C.; Coquerel, G. Ultrasound-Enhanced Deracemization: Toward the Existence of Agonist Effects in the Interpretation of Spontaneous Symmetry Breaking. Cryst. Growth Des. 2015, 15, 2151–2155. [Google Scholar] [CrossRef]
- Suwannasang, K.; Flood, A.E.; Rougeot, C.; Coquerel, G. Use of Programmed Damped Temperature Cycles for the Deracemization of a Racemic Suspension of a Conglomerate Forming System. Org. Process Res. Dev. 2017, 21, 623–630. [Google Scholar] [CrossRef]
- Lopes, C.; Cartigny, Y.; Brandel, C.; Dupray, V.; Body, C.; Shemchuk, O.; Leyssens, T. A Greener Pathway to Enantiopurity: Mechanochemical Deracemization through Abrasive Grinding. Chem. Eur. J. 2023, 29, e202300585. [Google Scholar] [CrossRef]
- Suwannasang, K.; Flood, A.; Rougeot, C.; Coquerel, G. Using Programmed Heating–Cooling Cycles with Racemization in Solution for Complete Symmetry Breaking of a Conglomerate Forming System. Cryst. Growth Des. 2013, 13, 3498–3504. [Google Scholar] [CrossRef]
- Uchin, R.; Suwannasang, K.; Flood, A.E. Model of Temperature Cycle-Induced Deracemization via Differences in Crystal Growth Rate Dispersion. Chem. Eng. Technol. 2017, 40, 1252–1260. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maeda, J.; Cardinael, P.; Coquerel, G.; Flood, A. Temperature Cycle-Induced Deracemization of Cl-TAK Using Amberlyst A26: A Heterogeneous Catalyst Approach for Efficient and Reusable Racemization. Chem. Proc. 2024, 15, 4. https://doi.org/10.3390/chemproc2024015004
Maeda J, Cardinael P, Coquerel G, Flood A. Temperature Cycle-Induced Deracemization of Cl-TAK Using Amberlyst A26: A Heterogeneous Catalyst Approach for Efficient and Reusable Racemization. Chemistry Proceedings. 2024; 15(1):4. https://doi.org/10.3390/chemproc2024015004
Chicago/Turabian StyleMaeda, Jin, Pascal Cardinael, Gerard Coquerel, and Adrian Flood. 2024. "Temperature Cycle-Induced Deracemization of Cl-TAK Using Amberlyst A26: A Heterogeneous Catalyst Approach for Efficient and Reusable Racemization" Chemistry Proceedings 15, no. 1: 4. https://doi.org/10.3390/chemproc2024015004
APA StyleMaeda, J., Cardinael, P., Coquerel, G., & Flood, A. (2024). Temperature Cycle-Induced Deracemization of Cl-TAK Using Amberlyst A26: A Heterogeneous Catalyst Approach for Efficient and Reusable Racemization. Chemistry Proceedings, 15(1), 4. https://doi.org/10.3390/chemproc2024015004