Protective Effect of Cyclolepis genistoides Aqueous Extract against Cellular Oxidative Stress †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material Extraction
2.2. Cell Culture
2.3. MTT Reduction Assay
2.4. Experimental Treatments
2.5. Determination of Cellular Oxidant Levels
2.6. Determination of Lipid Peroxidation
2.7. Statistical Analysis
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ingelsson, M. Alpha-synuclein oligomers-neurotoxic molecules in Parkinson’s disease and other Lewy body disorders. Front. Neurosci. 2016, 10, 408. [Google Scholar] [CrossRef] [PubMed]
- Lashuel, H.A.; Overk, C.R.; Oueslati, A.; Masliah, E. The many faces of α-synuclein: From structure and toxicity to therapeutic target. Nat. Rev. Neurosci. 2013, 14, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Sun, Q.; Chen, S. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog. Neurobiol. 2016, 147, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Sanders, L.H.; Greenamyren, J.T. Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. Free Radic. Biol. Med. 2013, 62, 111–120. [Google Scholar] [CrossRef] [PubMed]
- McFarthing, K.; Buff, S.; Rafaloff, G.; Dominey, T.; Wyse, R.K.; Stott, S.R.W. Parkinson’s Disease Drug Therapies in the Clinical Trial Pipeline: 2020. J. Parkinsons Dis. 2020, 10, 757–774. [Google Scholar] [CrossRef] [PubMed]
- Hannan, M.A.; Dash, R.; Sohag, A.A.M.; Haque, M.N.; Moon, I.S. Neuroprotection Against Oxidative Stress: Phytochemicals Targeting TrkB Signaling and the Nrf2-ARE Antioxidant System. Front. Mol. Neurosci. 2020, 13, 116. [Google Scholar] [CrossRef] [PubMed]
- Alza, N.P.; Murray, A.P.; Salvador, G.A. Cativic acid-caffeic acid hybrid exerts cytotoxic effects and induces apoptotic death in human neuroblastoma cells. Naunyn Schmiedebergs Arch. Pharmacol. 2017, 390, 1229–1238. [Google Scholar] [CrossRef] [PubMed]
- Sánchez Campos, S.; Alza, N.P.; Salvador, G.A. Lipid metabolism alterations in the neuronal response to A53T α-synuclein and Fe-induced injury. Arch. Biochem. Biophys. 2018, 655, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Uranga, R.M.; Alza, N.P.; Conde, M.A.; Antollini, S.S.; Salvador, G.A. Phosphoinositides: Two-Path Signaling in Neuronal Response to Oligomeric Amyloid β Peptide. Mol. Neurobiol. 2017, 54, 3236–3252. [Google Scholar] [CrossRef] [PubMed]
- de Rus Jacquet, A.; Tambe, M.A.; Ma, S.Y.; McCabe, G.P.; Vest, J.H.C.; Rochet, J.C. Pikuni-Blackfeet traditional medicine: Neuroprotective activities of medicinal plants used to treat Parkinson’s disease-related symptoms. J. Ethnopharmacol. 2017, 206, 393–407. [Google Scholar] [CrossRef] [PubMed]
- Uranga, R.M.; Salvador, G.A. Unraveling the Burden of Iron in Neurodegeneration: Intersections with Amyloid Beta Peptide Pathology. Oxidative Med. Cell. Longev. 2018, 2018, 2850341. [Google Scholar] [CrossRef] [PubMed]
- Sánchez Campos, S.; Rodríguez Diez, G.; Oresti, G.M.; Salvador, G.A. Dopaminergic neurons respond to iron-induced oxidative stress by modulating lipid acylation and deacylation cycles. PLoS ONE 2015, 10, e0130726. [Google Scholar] [CrossRef] [PubMed]
- Salvador, G.A. Iron in neuronal function and dysfunction. BioFactors 2010, 13, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Xin, C.; Zhang, C.-W.; Lim, K.-L.; Zhang, H.; Fu, Z.; Li, L.; Huang, W. Natural Molecules From Chinese Herbs Protecting Against Parkinson’s Disease via Anti-oxidative Stress. Front. Aging Neurosci. 2018, 10, 246. [Google Scholar] [CrossRef] [PubMed]
- Rabiei, Z.; Solati, K.; Amini-Khoei, H. Phytotherapy in treatment of Parkinson’s disease: A review. Pharm. Biol. 2019, 57, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Bitu Pinto, N.; da Silva Alexandre, B.; Tavares Neves, K.R.; Silva, A.; Lea, L.; Viana, G. Neuroprotective Properties of the Standardized Extract from Camellia sinensis (Green Tea) and Its Main Bioactive Components, Epicatechin and Epigallocatechin Gallate, in the 6-OHDA Model of Parkinson’s Disease. Evid. Based Complement. Altern. Med. 2015, 2015, 161092. [Google Scholar] [CrossRef] [PubMed]
- Prakash, J.; Yadav, S.K.; Chouhan, S.; Singh, S.P. Neuroprotective role of Withania somnifera root extract in maneb-paraquat induced mouse model of parkinsonism. Neurochem. Res. 2013, 38, 972–980. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alza, N.; Juncos, O.B.; Murray, A.; Salvador, G. Protective Effect of Cyclolepis genistoides Aqueous Extract against Cellular Oxidative Stress. Chem. Proc. 2021, 3, 104. https://doi.org/10.3390/ecsoc-24-08344
Alza N, Juncos OB, Murray A, Salvador G. Protective Effect of Cyclolepis genistoides Aqueous Extract against Cellular Oxidative Stress. Chemistry Proceedings. 2021; 3(1):104. https://doi.org/10.3390/ecsoc-24-08344
Chicago/Turabian StyleAlza, Natalia, Oriana Benzi Juncos, Ana Murray, and Gabriela Salvador. 2021. "Protective Effect of Cyclolepis genistoides Aqueous Extract against Cellular Oxidative Stress" Chemistry Proceedings 3, no. 1: 104. https://doi.org/10.3390/ecsoc-24-08344
APA StyleAlza, N., Juncos, O. B., Murray, A., & Salvador, G. (2021). Protective Effect of Cyclolepis genistoides Aqueous Extract against Cellular Oxidative Stress. Chemistry Proceedings, 3(1), 104. https://doi.org/10.3390/ecsoc-24-08344