Selected Thermodynamic Parameters of Antioxidant Activity of Coumarin Based Heterocyclic Compounds †
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jain, P.K.; Joshi, H. Coumarin: Chemical and pharmacological profile. J. Appl. Pharm. Sci. 2012, 2, 236–240. [Google Scholar]
- Bruneton, J. Pharmagognosy, Pyhtochemistry, Medical Plants, 2nd ed.; Intercept: Hampshire, UK, 1999. [Google Scholar]
- Matilla, P.; Hellström, J.; Törrönen, R. Phenolic acids in berries, fruits, and beverages. J. Agric. Food Chem. 2006, 54, 7193–7199. [Google Scholar] [CrossRef] [PubMed]
- Wildman, R.E. Handbook of Nutraceuticals and Functional Foods, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Aslam, K.K.; Khosa, M.K.; Jahan, N.; Nosheen, S. Short communication: Synthesis and applications of Coumarin. Pak. J. Pharm. Sci. 2010, 23, 449–454. [Google Scholar]
- Abraham, K.; Wöhrlich, F.; Lindtner, O.; Heinemeyer, G.; Lampen, A. Toxicology and risk assessment of coumarin: Focus on human data. Mol. Nutr. Food Res. 2010, 54, 228–239. [Google Scholar] [CrossRef]
- Liu, B.; Raeth, T.; Beuerle, T.; Beerhues, L. A novel 4-hydroxycoumarin biosynthetic pathway. Plant Mol. Biol. 2010, 72, 17–25. [Google Scholar] [CrossRef]
- Matos, M.J.; Santana, L.; Uriarte, E.; Abreu, O.A.; Molina, E.; Yordi, E.G. Coumarins—An Important Class of Phytochemicals. In Isolation, Characterisation and Role in Human Health, 1st ed.; Rao, V., Rao, L., Eds.; IntechOpen: London, UK, 2015; pp. 113–140. [Google Scholar]
- Lake, B.G. Coumarin metabolism, toxicity and carcinogenicity: Relevance for human risk assessment. Food. Chem. Toxicol. 1999, 37, 423–453. [Google Scholar] [CrossRef]
- Gamulin, S.; Kovač, Z.; Marušić, M. Patofiziologija, 7th ed.; Medicinska naklada: Zagreb, Croatia, 2011. [Google Scholar]
- Jeremić, S.; Amić, A.; Stanojević-Pirković, M.; Marković, Z. Selected anthraquinones as potential free radical scavengers and P-glycoprotein inhibitors. Org. Biomol. Chem. 2018, 16, 1890–1902. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Marković, Z. Study of the mechanisms of antioxidative action of different antioxidants. J. Serb. Soc. Comput. Mech. 2016, 10, 135–150. [Google Scholar] [CrossRef]
- Dimić, D.S. Eksperimentalno i Teorijsko Ispitivanje Odnosa Struktura-Antiradikalska Aktivnost Odabranih Neurotransmitera, Njihovih Prekursora i Metabolita. Ph.D. Thesis, Sveučilište u Beogradu, Fakultet za fizikalnu kemiju. Beograd, Serbia, 2018. [Google Scholar]
- Mohajer, A.; Somayeh Asemani, S. Theoretical investigation on antioxidant activity of vitamins and phenolic acids for designing a novel antioxidant. J. Mol. Struct. 2009, 930, 15–20. [Google Scholar] [CrossRef]
- Čačić, M.; Molnar, M. Design, Synthesis and Characterization of Some Novel 3-Coumarinyl-5-aryliden-1,3-thiazolidine-2,4-diones and Their Antioxidant Activity. Z. Naturforsch. 2011, 66, 177–183. [Google Scholar] [CrossRef]
- Čačić, M.; Molnar, M.; Šarkanj, B.; Has-Schon, E.; Rajković, V. Synthesis and antioxidant activity of some new coumarinyl-1, 3-thiazolidine-4-ones. Molecules 2010, 15, 6795–6809. [Google Scholar] [CrossRef] [PubMed]
- Čačić, M.; Molnar, M.; Strelec, I. Synthesis and biological evaluation of a novel series of 1, 3-dicoumarinyl-5-aryl-2-pyrazolines. Heterocycles 2011, 83, 1553–1566. [Google Scholar] [CrossRef]
- Šarkanj, B.; Čačić, M.; Molnar, M.; Grille, L. 4-Methyl-7-hydroxycoumarin antifungal and antioxidant activity enhancement by substitution with thiosemicarbazide and thiazolidinone moieties. Food Chem. 2013, 139, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Al-Amiery, A.A.; Al-Majedy, Y.K.; Kadhum, A.A.H.; Mohamad, A.B. Hydrogen Peroxide Scavenging Activity of Novel Coumarins Synthesized Using Different Approaches. PLoS ONE 2015, 10, e0132175. [Google Scholar] [CrossRef] [PubMed]
- Molnar, M.; Amić, A.; Pavić, V.; Kovač, T.; Kovač, M.; Has-Schon, E. Biological study on novel coumarinyl 1, 3, 4-oxadiazoles. Turk. J. Chem. 2018, 42, 146–157. [Google Scholar] [CrossRef]
No. | Structure | BDE | IP |
---|---|---|---|
1 | 341.6 | 772.2 | |
2 | 375.5 | 831.8 | |
3 | 336.6 | 778.1 | |
4 | 334.5 | 785.7 | |
5 | 346.3 | 773.0 | |
6 | 335.1 | 755.1 | |
7 | 311.1 | 747.3 | |
8 | 335.8 | 848.5 | |
9 | 319.4 | 761.7 | |
10 | 299.1 | 787.1 | |
11 | 316.9 | 749.8 | |
12 | 315.3 | 787.4 | |
13 | 319.6 | 736.2 | |
14 | 350.9 | 750.6 | |
15 | 352.9 | 852.2 | |
16 | 285.5 | 684.5 | |
17 | 331.2 | 797.8 | |
18 | 314.9 | 793.8 | |
19 | 354.5 | 820.0 | |
20 | 338.5 | 824.6 | |
21 | 338.4 | 819.2 | |
22 | 351.3 | 816.3 | |
23 | 324.7 | 795.6 | |
24 | 341.8 | 784.5 | |
25 | 333.9 | 763.6 | |
26 | 301.2 | 668.0 |
No. | Structure | BDE | IP |
---|---|---|---|
27 | 291.1 | 766.0 | |
28 | 285.3 | 753.7 | |
29 | 324.2 | 740.2 | |
30 | 275.5 | 753.7 | |
31 | 305.2 | 731.3 | |
32 | 358.4 | 804.3 | |
33 | 314.0 | 761.3 | |
34 | 359.7 | 689.3 | |
35 | 359.3 | 690.4 | |
36 | 358.9 | 668.0 |
No. | Structure | BDE | IP |
---|---|---|---|
37 | 294.3 | 782.1 | |
38 | 258.5 | 799.4 | |
39 | 269.5 | 801.3 | |
40 | 300.9 | 801.5 | |
41 | 296.9 | 801.0 | |
42 | 299.5 | 802.0 | |
43 | 254.4 | 807.7 | |
44 | 298.1 | 804.7 | |
45 | 296.8 | 798.7 | |
46 | 293.5 | 797.5 | |
47 | 297.7 | 804.3 | |
48 | 261.7 | 793.9 | |
49 | 299.1 | 796.1 | |
50 | 298.5 | 797.7 | |
51 | 282.3 | 759.0 |
Compound | n-OH | n-Vicinal OH | n-NH |
---|---|---|---|
1 | 0 | 0 | 1 |
2 | 1 | 0 | 1 |
3 | 1 | 0 | 1 |
4 | 1 | 0 | 1 |
5 | 0 | 0 | 1 |
6 | 0 | 0 | 1 |
7 | 0 | 0 | 1 |
8 | 2 | 1 | 1 |
9 | 2 | 0 | 1 |
10 | 2 | 0 | 1 |
11 | 2 | 1 | 1 |
12 | 2 | 0 | 1 |
13 | 1 | 0 | 1 |
14 | 0 | 0 | 1 |
15 | 1 | 0 | 1 |
16 | 0 | 0 | 1 |
17 | 0 | 0 | 1 |
18 | 0 | 0 | 1 |
19 | 0 | 0 | 1 |
20 | 0 | 0 | 1 |
21 | 0 | 0 | 1 |
22 | 0 | 0 | 1 |
23 | 0 | 0 | 1 |
24 | 0 | 0 | 1 |
25 | 0 | 0 | 1 |
26 | 0 | 0 | 1 |
27 | 0 | 0 | 3 |
28 | 0 | 0 | 3 |
29 | 0 | 0 | 3 |
30 | 0 | 0 | 3 |
31 | 0 | 0 | 3 |
32 | 0 | 0 | 1 |
33 | 0 | 0 | 1 |
34 | 0 | 0 | 1 |
35 | 0 | 0 | 1 |
36 | 0 | 0 | 1 |
37 | 0 | 0 | 0 |
38 | 0 | 0 | 0 |
39 | 0 | 0 | 0 |
40 | 0 | 0 | 0 |
41 | 0 | 0 | 0 |
42 | 0 | 0 | 0 |
43 | 0 | 0 | 0 |
44 | 0 | 0 | 0 |
45 | 0 | 0 | 0 |
46 | 0 | 0 | 0 |
47 | 0 | 0 | 0 |
48 | 0 | 0 | 0 |
49 | 0 | 0 | 0 |
50 | 0 | 0 | 0 |
51 | 0 | 0 | 0 |
Compound | N–H BDE | O–H BDE |
---|---|---|
2 | 457.5 | 375.5 |
3 | 336.6 | 342.8 |
4 | 347.0 | 334.5 |
8 | 379.7 | 335.8 |
9 | 321.3 | 319.4 |
10 | 322.3 | 299.1 |
11 | 336.6 | 316.9 |
12 | 315.3 | 332.6 |
13 | 335.8 | 319.6 |
15 | 352.9 | 394.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amić, A.; Gotal, E. Selected Thermodynamic Parameters of Antioxidant Activity of Coumarin Based Heterocyclic Compounds. Chem. Proc. 2021, 3, 109. https://doi.org/10.3390/ecsoc-24-08385
Amić A, Gotal E. Selected Thermodynamic Parameters of Antioxidant Activity of Coumarin Based Heterocyclic Compounds. Chemistry Proceedings. 2021; 3(1):109. https://doi.org/10.3390/ecsoc-24-08385
Chicago/Turabian StyleAmić, Ana, and Elena Gotal. 2021. "Selected Thermodynamic Parameters of Antioxidant Activity of Coumarin Based Heterocyclic Compounds" Chemistry Proceedings 3, no. 1: 109. https://doi.org/10.3390/ecsoc-24-08385
APA StyleAmić, A., & Gotal, E. (2021). Selected Thermodynamic Parameters of Antioxidant Activity of Coumarin Based Heterocyclic Compounds. Chemistry Proceedings, 3(1), 109. https://doi.org/10.3390/ecsoc-24-08385