Design, Synthesis, and Photophysical Properties of BODIPY-Labeled Lupane Triterpenoids †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemistry
General Procedure for the Synthesis of Methyl Betulonate Adducts with BODIPY 21–26
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dzubak, P.; Hajduch, M.; Vydra, D.; Hustova, A.; Kvasnica, M.; Biedermann, D.; Markova, L.; Urban, M.; Sarek, J. Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat. Prod. Rep. 2006, 23, 394–411. [Google Scholar] [CrossRef] [PubMed]
- Mullauer, F.B.; Kessler, J.H.; Medema, J.P. Betulinic acid, a natural compound with potent anticancer effects. Anticancer Drugs 2010, 21, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Sheng, H.; Sun, H. Synthesis, biology and clinical significance of pentacyclic triterpenes: A multi-target approach to prevention and treatment of metabolic and vascular diseases. Nat. Prod. Rep. 2011, 28, 543–593. [Google Scholar] [CrossRef] [PubMed]
- Cichewicz, R.H.; Kouzi, S.A. Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med. Res. Rev. 2004, 24, 90–114. [Google Scholar] [CrossRef]
- Csuk, R. Betulinic acid and its derivatives: A patent review (2008–2013). Expert Opin. Ther. Pat. 2014, 24, 913–923. [Google Scholar] [CrossRef] [PubMed]
- Kashiwada, Y.; Hashimoto, F.; Cosentino, L.M.; Chen, C.-H.; Garrett, P.E.; Lee, K.-H. Betulinic Acid and Dihydrobetulinic Acid Derivatives as Potent Anti-HIV Agents. J. Med. Chem. 1996, 39, 1016–1017. [Google Scholar] [CrossRef]
- AIKEN, C.; CHEN, C. Betulinic acid derivatives as HIV-1 antivirals. Trends Mol. Med. 2005, 11, 31–36. [Google Scholar] [CrossRef]
- Martin, D.E.; Salzwedel, K.; Allaway, G.P. Bevirimat: A novel maturation inhibitor for the treatment of HIV-1 infection. Antivir. Chem. Chemother. 2008, 19, 107–113. [Google Scholar] [CrossRef]
- Yu, D.; Wild, C.T.; Martin, D.E.; Morris-Natschke, S.L.; Chen, C.-H.; Allaway, G.P.; Lee, K.-H. The discovery of a class of novel HIV-1 maturation inhibitors and their potential in the therapy of HIV. Expert Opin. Investig. Drugs 2005, 14, 681–693. [Google Scholar] [CrossRef]
- Nedopekina, D.A.; Gubaidullin, R.R.; Odinokov, V.N.; Maximchik, P.V.; Zhivotovsky, B.; Bel’Skii, Y.P.; Khazanov, V.A.; Manuylova, A.V.; Gogvadze, V.; Spivak, A.Y. Mitochondria-targeted betulinic and ursolic acid derivatives: Synthesis and anticancer activity. MedChemComm 2017, 8, 1934–1945. [Google Scholar] [CrossRef]
- Spivak, A.Y.; Nedopekina, D.A.; Khalitova, R.R.; Gubaidullin, R.R.; Odinokov, V.N.; Bel’skii, Y.P.; Bel’skaya, N.V.; Khazanov, V.A. Triphenylphosphonium cations of betulinic acid derivatives: Synthesis and antitumor activity. Med. Chem. Res. 2017, 26, 518–531. [Google Scholar] [CrossRef]
- Tsepaeva, O.V.; Nemtarev, A.V.; Abdullin, T.I.; Grigor’Eva, L.R.; Kuznetsova, E.V.; Akhmadishina, R.A.; Ziganshina, L.E.; Cong, H.H.; Mironov, V.F. Design, Synthesis, and Cancer Cell Growth Inhibitory Activity of Triphenylphosphonium Derivatives of the Triterpenoid Betulin. J. Nat. Prod. 2017, 80, 2232–2239. [Google Scholar] [CrossRef] [PubMed]
- Sommerwerk, S.; Heller, L.; Kerzig, C.; Kramell, A.E.; Csuk, R. Rhodamine B conjugates of triterpenoic acids are cytotoxic mitocans even at nanomolar concentrations. Eur. J. Med. Chem. 2017, 127, 1–9. [Google Scholar] [CrossRef]
- Wolfram, R.K.; Heller, L.; Csuk, R. Targeting mitochondria: Esters of rhodamine B with triterpenoids are mitocanic triggers of apoptosis. Eur. J. Med. Chem. 2018, 152, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Fulda, S.; Kroemer, G. Targeting mitochondrial apoptosis by betulinic acid in human cancers. Drug Discov. Today 2009, 14, 885–890. [Google Scholar] [CrossRef]
- Fulda, S.; Kroemer, G. Mitochondria as Therapeutic Targets for the Treatment of Malignant Disease. Antioxid. Redox Signal. 2011, 15, 2937–2949. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hu, J.; Chen, Y. Betulinic acid and the pharmacological effects of tumor suppression (Review). Mol. Med. Rep. 2016, 14, 4489–4495. [Google Scholar] [CrossRef]
- Bertrand, B.; Passador, K.; Goze, C.; Denat, F.; Bodio, E.; Salmain, M. Metal-based BODIPY derivatives as multimodal tools for life sciences. Coord. Chem. Rev. 2018, 358, 108–124. [Google Scholar] [CrossRef]
- Boens, N.; Leen, V.; Dehaen, W. Fluorescent indicators based on BODIPY. Chem. Soc. Rev. 2012, 41, 1130–1172. [Google Scholar] [CrossRef]
- Karolin, J.; Johansson, L.B.-A.; Strandberg, L.; Ny, T. Fluorescence and Absorption Spectroscopic Properties of Dipyrrometheneboron Difluoride (BODIPY) Derivatives in Liquids, Lipid Membranes, and Proteins. J. Am. Chem. Soc. 1994, 116, 7801–7806. [Google Scholar] [CrossRef]
- Bañuelos, J. BODIPY Dye, the Most Versatile Fluorophore Ever? Chem. Rec. 2016, 16, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gonzalez, M.R.; Urías-Benavides, A.; Alvarado-Martínez, E.; Lopez, J.C.; Gómez, A.M.; del Rio, M.; Garcia, I.; Costela, A.; Bañuelos, J.; Arbeloa, T.; et al. Convenient Access to Carbohydrate–BODIPY Hybrids by Two Complementary Methods Involving One-Pot Assembly of “Clickable” BODIPY Dyes. Eur. J. Org. Chem. 2014, 2014, 5659–5663. [Google Scholar] [CrossRef]
- Králová, J.; Jurášek, M.; Krčová, L.; Dolenský, B.; Novotný, I.; Dušek, M.; Rottnerová, Z.; Kahle, M.; Drašar, P.; Bartůněk, P.; et al. Heterocyclic sterol probes for live monitoring of sterol trafficking and lysosomal storage disorders. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Osati, S.; Ali, H.; van Lier, J.E. BODIPY–steroid conjugates: Syntheses and biological applications. J. Porphyr. Phthalocyanines 2016, 20, 61–75. [Google Scholar] [CrossRef]
- Hanson, R.N.; Gajadeera, N. Design and synthesis of fluorescently labeled steroidal antiestrogens. Steroids 2019, 145, 39–46. [Google Scholar] [CrossRef]
- Li, Z.; Mintzer, E.; Bittman, R. First Synthesis of Free Cholesterol−BODIPY Conjugates. J. Org. Chem. 2006, 71, 1718–1721. [Google Scholar] [CrossRef]
- Bacsa, I.; Konc, C.; Orosz, A.; Kecskeméti, G.; Rigó, R.; Özvegy-Laczka, C.; Mernyák, E. Synthesis of Novel C-2- or C-15-Labeled BODIPY—Estrone Conjugates. Molecules 2018, 23, 821. [Google Scholar] [CrossRef]
- Malachowska-Ugarte, M.; Sperduto, C.; Ermolovich, Y.V.; Sauchuk, A.L.; Jurášek, M.; Litvinovskaya, R.P.; Straltsova, D.; Smolich, I.; Zhabinskii, V.N.; Drašar, P.; et al. Brassinosteroid-BODIPY conjugates: Design, synthesis, and properties. Steroids 2015, 102, 53–59. [Google Scholar] [CrossRef]
- Krajcovicova, S.; Stankova, J.; Dzubak, P.; Hajduch, M.; Soural, M.; Urban, M. A Synthetic Approach for the Rapid Preparation of BODIPY Conjugates and their use in Imaging of Cellular Drug Uptake and Distribution. Chemistry 2018, 24, 4957–4966. [Google Scholar] [CrossRef]
- Brandes, B.; Hoenke, S.; Fischer, L.; Csuk, R. Design, synthesis and cytotoxicity of BODIPY FL labelled triterpenoids. Eur. J. Med. Chem. 2020, 185, 111858. [Google Scholar] [CrossRef]
- Spivak, A.Y.; Gubaidullin, R.R.; Galimshina, Z.R.; Nedopekina, D.A.; Odinokov, V.N. Effective synthesis of novel C(2)-propargyl derivatives of betulinic and ursolic acids and their conjugation with β-d-glucopyranoside azides via click chemistry. Tetrahedron 2016, 72, 1249–1256. [Google Scholar] [CrossRef]
- Gubaidullin, R.R.; Yarmukhametova, D.S.; Nedopekina, D.A.; Khalitova, R.R.; Spivak, A.Y. Effective synthesis of novel furan-fused pentacyclic triterpenoids via anionic 5-exo dig cyclization of 2-alkynyl-3-oxotriterpene acids. Arkivoc 2017, 2017, 100–116. [Google Scholar] [CrossRef]
- Gubaidullin, R.R.; Khalitova, R.R.; Galimshina, Z.R.; Spivak, A.Y. Synthesis of novel [3,2-b] furan-fused pentacyclic triterpenoids via gold—Catalyzed intramolecular heterocyclization of 2-alkynyl-3-oxotriterpene acids. Tetrahedron 2018, 74, 1888–1899. [Google Scholar] [CrossRef]
- Kim, D.S.; Chen, Z.; Nguyen, V.T.; Pezzuto, J.M.; Qiu, S.; Lu, Z.Z. A Concise Semi-Synthetic Approach to Betulinic Acid from Betulin. Synth. Commun. 1997, 27, 1607–1612. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, F.; Liu, P.; Hao, F.; Luo, H. Synthesis and catalytic properties of trans-A2B2-type metalloporphyrins in cyclohexane oxidation. Can. J. Chem. 2013, 92, 49–53. [Google Scholar] [CrossRef]
- Basumatary, B.; Raja Sekhar, A.; Ramana Reddy, R.V.; Sankar, J. Corrole-BODIPY Dyads: Synthesis, Structure, and Electrochemical and Photophysical Properties. Inorg. Chem. 2015, 54, 4257–4267. [Google Scholar] [CrossRef]
- Ortiz, M.J.; Agarrabeitia, A.R.; Duran-Sampedro, G.; Bañuelos Prieto, J.; Lopez, T.A.; Massad, W.A.; Montejano, H.A.; García, N.A.; Lopez Arbeloa, I. Synthesis and functionalization of new polyhalogenated BODIPY dyes. Study of their photophysical properties and singlet oxygen generation. Tetrahedron 2012, 68, 1153–1162. [Google Scholar] [CrossRef]
- Loudet, A.; Burgess, K. BODIPY Dyes and Their Derivatives: Syntheses and Spectroscopic Properties. Chem. Rev. 2007, 107, 4891–4932. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Y.; Xiao, Y.; Qian, S.; Qian, X. Long-wavelength boradiazaindacene derivatives with two-photon absorption activity and strong emission: Versatile candidates for biological imaging applications. Tetrahedron 2009, 65, 8099–8103. [Google Scholar] [CrossRef]
- Kolemen, S.; Bozdemir, O.A.; Cakmak, Y.; Barin, G.; Erten-Ela, S.; Marszalek, M.; Yum, J.-H.; Zakeeruddin, S.M.; Nazeeruddin, M.K.; Grätzel, M.; et al. Optimization of distyryl-Bodipy chromophores for efficient panchromatic sensitization in dye sensitized solar cells. Chem. Sci. 2011, 2, 949–954. [Google Scholar] [CrossRef]
- Leen, V.; Leemans, T.; Boens, N.; Dehaen, W. 2- and 3-Monohalogenated BODIPY Dyes and Their Functionalized Analogues: Synthesis and Spectroscopy. Eur. J. Org. Chem. 2011, 2011, 4386–4396. [Google Scholar] [CrossRef]
- Qin, W.; Rohand, T.; Dehaen, W.; Clifford, J.N.; Driesen, K.; Beljonne, D.; Van Averbeke, B.; Van der Auweraer, M.; Boens, N. Boron Dipyrromethene Analogs with Phenyl, Styryl, and Ethynylphenyl Substituents: Synthesis, Photophysics, Electrochemistry, and Quantum-Chemical Calculations. J. Phys. Chem. A 2007, 111, 8588–8597. [Google Scholar] [CrossRef] [PubMed]
Entry | Solvent | Abs1 . | ε × 104 | FL | φ | Stokes Shift |
---|---|---|---|---|---|---|
λmax, nm | M−1·cm−1 | λmax, nm | nm | |||
17 | MeOH | 500 | 6.8 | 518 | 0.01 | 18 |
18 | MeOH | 500 | 9.3 | 509 | 0.41 | 9 |
19 | MeOH | 503 | 4.2 | 522 | 0.01 | 19 |
519 | 4.1 | 548 | 29 | |||
20 | MeOH | 517 | 5.9 | 544 | 0.01 | 27 |
21 | MeOH | 499 | 4.2 | 519 | 0.01 | 20 |
22 | MeOH | 498 | 6.5 | 509 | 0.38 | 11 |
23 | MeOH | 500 | 3.6 | 517 | 0.01 | 17 |
24 | MeOH | 500 | 4.6 | 518 | 0.01 | 18 |
25 | MeOH | 539 | 4.7 | 582 | 0.06 | 43 |
26 | MeOH | 534 | 2.4 | 571 | 0.14 | 37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gubaidullin, R.; Nedopekina, D.; Tukhbatullin, A.; Davletshin, E.; Spivak, A. Design, Synthesis, and Photophysical Properties of BODIPY-Labeled Lupane Triterpenoids. Chem. Proc. 2021, 3, 11. https://doi.org/10.3390/ecsoc-24-08102
Gubaidullin R, Nedopekina D, Tukhbatullin A, Davletshin E, Spivak A. Design, Synthesis, and Photophysical Properties of BODIPY-Labeled Lupane Triterpenoids. Chemistry Proceedings. 2021; 3(1):11. https://doi.org/10.3390/ecsoc-24-08102
Chicago/Turabian StyleGubaidullin, Rinat, Darya Nedopekina, Adis Tukhbatullin, Eldar Davletshin, and Anna Spivak. 2021. "Design, Synthesis, and Photophysical Properties of BODIPY-Labeled Lupane Triterpenoids" Chemistry Proceedings 3, no. 1: 11. https://doi.org/10.3390/ecsoc-24-08102
APA StyleGubaidullin, R., Nedopekina, D., Tukhbatullin, A., Davletshin, E., & Spivak, A. (2021). Design, Synthesis, and Photophysical Properties of BODIPY-Labeled Lupane Triterpenoids. Chemistry Proceedings, 3(1), 11. https://doi.org/10.3390/ecsoc-24-08102