Preparation and Hydro-Lipophilic Properties of Novel Fluorinated Benzyl Carbamates of 4-Aminosalicylanilides †
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. General
3.2. Synthesis
3.3. Determination of Lipophilicity by HPLC
3.4. Lipophilicity Calculations
Acknowledgments
Conflicts of Interest
References
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Kerns, E.H.; Di, L. Drug-Like Properties: Concepts. Structure Design and Methods: From ADME to Toxicity Optimization; Academic Press: San Diego, CA, USA, 2008. [Google Scholar]
- Pliska, V. Methods and Principles in Medicinal Chemistry. In Lipophilicity in Drug Action and Toxicology, 1st ed.; Pliska, V., Testa., B., van der Waterbeemd, H., Eds.; Wiley-VCH: Weinheim, Germany, 1996; pp. 1–6. [Google Scholar]
- Kucerova-Chlupacova, M.; Opletalova, V.; Jampilek, J.; Dolezel, J.; Dohnal, J.; Pour, M.; Kunes, J.; Vorisek, V. New hydrophobicity constants of substituents in pyrazine rings derived from RP-HPLC study. Coll. Czech. Chem. Commun. 2008, 73, 1–18. [Google Scholar] [CrossRef]
- Musilek, K.; Jampilek, J.; Dohnal, J.; Jun, D.; Gunn-Moore, F.; Dolezal, M.; Kuca, K. RP-HPLC determination of the lipophilicity of bispyridinium reactivators of acetylcholinesterase bearing a but-2-ene connecting linker. Anal. Bioanal. Chem. 2008, 391, 367–372. [Google Scholar] [CrossRef]
- Musiol, R.; Jampilek, J.; Podeszwa, B.; Finster, J.; Tabak, D.; Dohnal, J.; Polanski, J. RP-HPLC determination of drug lipophilicity in series of quinoline derivatives. Cent. Eur. J. Chem. 2009, 7, 586–597. [Google Scholar]
- Kapustikova, I.; Bak, A.; Gonec, T.; Kos, J.; Kozik, V.; Jampilek, J. Investigation of hydro-lipophilic properties of N-alkoxyphenylhydroxynaphthalenecarboxamides. Molecules 2018, 23, 1635. [Google Scholar] [CrossRef]
- Wang, B.J.; Cao, D.S.; Zhu, M.F.; Yun, Y.H.; Xiao, N.; Liang, Y.Z. In silico evaluation of log D7.4 and comparison with other prediction methods. J. Chemom. 2015, 29, 389–398. [Google Scholar] [CrossRef]
- Kujawski, J.; Popielarska, H.; Myka, A.; Drabinska, B.; Bernard, M.K. The log P parameter as a molecular descriptor in the computer-aided drug design—An overview. Comp. Met. Sci. Technol. 2012, 18, 81–88. [Google Scholar]
- Caron, G.; Vallaro, M.; Ermondi, G. Log P as a tool in intramolecular hydrogen bond considerations. Drug Discov. Today 2018, 27, 65–70. [Google Scholar] [CrossRef]
- Andres, A.; Roses, M.; Rafols, C.; Bosch, E.; Espinosa, S.; Segarra, V.; Huerta, J.M. Setup and validation of shake-flask procedures for the determination of partition coefficients (log D) from low drug amounts. Eur. J. Pharm. Sci. 2015, 76, 181–191. [Google Scholar] [CrossRef]
- Arif, T. Salicylic acid as a peeling agent: A comprehensive review. Clin. Cosmet. Investig. Dermatol. 2015, 8, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Marek, G.; Carver, R.; Ding, Y.; Sathyanarayan, D.; Zhang, X.; Mou, Z. A high-throughput method for isolation of salicylic acid metabolic mutants. Plant Methods 2010, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Osmakov, D.I.; Khasanov, T.A.; Andreev, Y.A.; Lyukmanova, E.N.; Kozlov, S.A. Animal, herb, and microbial toxins for structural and pharmacological study of acid-sensing ion channels. Front. Pharmacol. 2020, 11, 991. [Google Scholar] [CrossRef] [PubMed]
- Zadrazilova, I.; Pospisilova, S.; Masarikova, M.; Imramovsky, A.; Monreal-Ferriz, J.; Vinsova, J.; Cizek, A.; Jampilek, J. Salicylanilide carbamates: Promising antibacterial agents with high in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA). Eur. J. Pharm. Sci. 2015, 77, 197–207. [Google Scholar] [CrossRef]
- DrugBank–Mesalazine. Canadian Institutes of Health Research, Canada. 2020. Available online: https://go.drugbank.com/drugs/DB00244 (accessed on 10 October 2020).
- DrugBank–Para-Aminosalicylic Acid. Canadian Institutes of Health Research, Canada. 2020. Available online: https://go.drugbank.com/drugs/DB00233 (accessed on 10 October 2020).
- Dhaneshwar, S.S. Colon-specific prodrugs of 4-aminosalicylic acid for inflammatory bowel disease. World J. Gastroenterol. 2014, 20, 3564–3571. [Google Scholar] [CrossRef]
- Yan, Y.; Ren, F.; Wang, P.; Sun, Y.; Xing, J. Synthesis and evaluation of a prodrug of 5-aminosalicylic acid for the treatment of ulcerative colitis. Iran. J. Basic Med. Sci. 2019, 22, 1452–1461. [Google Scholar]
- Ghosh, A.K.; Brindisi, M. Organic carbamates in drug design and medicinal chemistry. J. Med. Chem. 2015, 58, 2895–2940. [Google Scholar] [CrossRef]
- Roche, V.F.; Zito, S.W.; Lemke, T.L.; Williams, D.A. Foye’s Principles of Medicinal Chemistry, 8th ed.; Lippincott Williams & Wilkins and Wolters Kluwer: Baltimore, MD, USA, 2020. [Google Scholar]
- Imramovsky, A.; Pesko, M.; Monreal-Ferriz, J.; Kralova, K.; Vinsova, J.; Jampilek, J. Photosynthesis-inhibiting efficiency of 4-chloro-2-(chlorophenylcarbamoyl)phenyl alkylcarbamates. Bioorg. Med. Chem. Lett. 2011, 21, 4564–4567. [Google Scholar] [CrossRef]
- Imramovsky, A.; Stepankova, S.; Vanco, J.; Pauk, K.; Monreal-Ferriz, J.; Vinsova, J.; Jampilek, J. Acetylcholinesterase-Inhibiting activity of salicylanilide N-alkylcarbamates and their molecular docking. Molecules 2012, 17, 10142–10158. [Google Scholar] [CrossRef]
- Imramovsky, A.; Pejchal, V.; Stepankova, S.; Vorcakova, K.; Jampilek, J.; Vanco, J.; Simunek, P.; Kralovec, K.; Bruckova, L.; Mandikova, J.; et al. Synthesis and in vitro evaluation of new derivatives of 2-substituted-6-fluorobenzo[d]thiazoles as cholinesterase inhibitors. Bioorg. Med. Chem. 2013, 21, 1735–1748. [Google Scholar] [CrossRef]
- Gonec, T.; Pospisilova, S.; Kos, J.; Oravec, M.; Kollar, P.; Cizek, A.; Jampilek, J. Synthesis and antimicrobial evaluation of 1-[(2-substituted phenyl)carbamoyl]naphthalen-2-yl carbamates. Molecules 2016, 21, 1189. [Google Scholar] [CrossRef] [PubMed]
- Gonec, T.; Pesko, M.; Kos, J.; Oravec, M.; Kralova, K.; Jampilek, J. Photosynthesis-inhibiting activity of 1-[(2-chlorophenyl)carbamoyl]- and 1-[(2-nitrophenyl)carbamoyl]-naphthalen-2-yl alkylcarbamates. Molecules 2017, 22, 1199. [Google Scholar] [CrossRef] [PubMed]
- Pizova, H.; Stepankova, S.; Bak, A.; Kauerova, T.; Kozik, V.; Oravec, M.; Imramovsky, A.; Kollar, P.; Bobal, P.; Jampilek, J. Prolin-based carbamates as cholinesterase inhibitors. Molecules 2017, 22, 1969. [Google Scholar] [CrossRef] [PubMed]
- Vettorazzi, M.; Angelina, E.; Lima, S.; Gonec, T.; Otevrel, J.; Marvanova, P.; Padrtova, T.; Mokry, P.; Bobal, P.; Acosta, L.M.; et al. Search of new structural scaffolds for sphingosine kinase 1 inhibitors. Eur. J. Med. Chem. 2017, 139, 461–481. [Google Scholar] [CrossRef]
- Bak, A.; Kozik, V.; Kozakiewicz, D.; Gajcy, K.; Strub, D.J.; Swietlicka, A.; Stepankova, S.; Imramovsky, A.; Polanski, J.; Smolinski, A.; et al. Novel benzene-based carbamates for AChE/BChE inhibition: Synthesis and ligand/structure-oriented SAR study. Int. J. Mol. Sci. 2019, 20, 1524. [Google Scholar] [CrossRef]
- Vettorazzi, M.; Lima, S.; Acosta, L.; Yepes, F.; Palma, A.; Cobo, J.; Tengler, J.; Malik, I.; Alvarez, S.; Spiegel, S.; et al. Design, synthesis, and biological evaluation of sphingosine kinase 2 inhibitors with anti-inflammatory activity. Arch. Pharm. 2019, 352, 1800298. [Google Scholar] [CrossRef]
- Campos, L.E.; Garibotto, F.M.; Angelina, E.; Kos, J.; Tomasic, T.; Zidar, N.; Kikelj, D.; Gonec, T.; Marvanova, P.; Mokry, P.; et al. Searching new structural scaffolds for BRAF inhibitors. Integrative study using theoretical and experimental techniques. Bioorg. Chem. 2019, 91, 103125. [Google Scholar] [CrossRef]
- Hansch, C.; Leo, A.; Unger, S.H.; Kim, K.H.; Nikaitani, D.; Lien, E.J. “Aromatic” substituent constants for structure-activity correlations. J. Med. Chem. 1973, 16, 1207–1216. [Google Scholar] [CrossRef]
- Pospisilova, S.; Kos, J.; Michnova, H.; Kapustikova, I.; Strharsky, T.; Oravec, M.; Moricz, A.M.; Bakonyi, J.; Kauerova, T.; Kollar, P.; et al. Synthesis and spectrum of biological activities of novel N-arylcinnamamides. Int. J. Mol. Sci. 2018, 19, 2318. [Google Scholar] [CrossRef]
- Michnova, H.; Pospisilova, S.; Gonec, T.; Kapustikova, I.; Kollar, P.; Kozik, V.; Musiol, R.; Jendrzejewska, I.; Vanco, J.; Travnicek, Z.; et al. Bioactivity of methoxylated and methylated 1-hydroxynaphthalene-2-carboxanilides: Comparative molecular surface analysis. Molecules 2019, 24, 2991. [Google Scholar] [CrossRef]
- Kos, J.; Zadrazilova, I.; Nevin, E.; Soral, M.; Gonec, T.; Kollar, P.; Oravec, M.; Coffey, A.; O’Mahony, J.; Liptaj, T.; et al. Ring-substituted 8-hydroxyquinoline-2-carboxanilides as potential antimycobacterial agents. Bioorg. Med. Chem. 2015, 23, 4188–4196. [Google Scholar] [CrossRef] [PubMed]
- Kos, J.; Ku, C.F.; Kapustikova, I.; Oravec, M.; Zhang, H.J.; Jampilek, J. 8-Hydroxyquinoline-2-carboxanilides as antiviral agents against avian influenza virus. Chem. Sel. 2019, 4, 4582–4587. [Google Scholar] [CrossRef]
- Norrington, F.E.; Hyde, R.M.; Williams, S.G.; Wootton, R. Physicochemical-activity relations in practice I. A rational and self-consistent data bank. J. Med. Chem. 1975, 18, 604–607. [Google Scholar] [CrossRef] [PubMed]
- Dearden, J.C. Partitioning and lipophilicity in quantitative structure-activity relationships. Environ. Health Perspect. 1985, 61, 203–228. [Google Scholar] [CrossRef] [PubMed]
Comp. | R | log k | log D7,4 | log P a | log P/Clog P b |
---|---|---|---|---|---|
1 | H | 0.1160 | 0.1896 | 4.62 | 3.68/3.4412 |
2 | 3-F | 0.2303 | 0.2465 | 4.91 | 3.83/3.8418 |
3 | 2,4-F | 0.1912 | 0.2218 | 4.83 | 3.99/3.4749 |
4 | 2,5-F | 0.4012 | 0.3974 | 4.95 | 3.99/3.4749 |
5 | 2,6-F | −0.1205 | −0.0086 | 4.70 | 3.99/2.8749 |
6 | 3,5-F | 0.4072 | 0.3788 | 5.15 | 3.99/4.0749 |
7 | 2,4,6-F | −0.0131 | 0.0861 | 4.81 | 4.15/3.0495 |
8 | 3,4,5-F | 0.5169 | 0.4895 | 5.26 | 4.15/4.1095 |
Comp. | R | πAr (exp. log k) | πAr (exp. log D7.4) | πAr (ACD/Percepta) |
---|---|---|---|---|
1 | H | 0 | 0 | 1.76 |
2 | 3-F | −0.24 | −0.20 | 2.80 |
3 | 2,4-F | −0.13 | −0.10 | 2.81 |
4 | 2,5-F | 0.08 | 0.03 | 2.23 |
5 | 2,6-F | 0.11 | 0.06 | 1.78 |
6 | 3,5-F | 0.29 | 0.21 | 2.35 |
7 | 2,4,6-F | 0.29 | 0.19 | 1.84 |
8 | 3,4,5-F | 0.40 | 0.30 | 1.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jankech, T.; Pindjakova, D.; Kos, J.; Hutta, M.; Jampilek, J. Preparation and Hydro-Lipophilic Properties of Novel Fluorinated Benzyl Carbamates of 4-Aminosalicylanilides. Chem. Proc. 2021, 3, 32. https://doi.org/10.3390/ecsoc-24-08094
Jankech T, Pindjakova D, Kos J, Hutta M, Jampilek J. Preparation and Hydro-Lipophilic Properties of Novel Fluorinated Benzyl Carbamates of 4-Aminosalicylanilides. Chemistry Proceedings. 2021; 3(1):32. https://doi.org/10.3390/ecsoc-24-08094
Chicago/Turabian StyleJankech, Timotej, Dominika Pindjakova, Jiri Kos, Milan Hutta, and Josef Jampilek. 2021. "Preparation and Hydro-Lipophilic Properties of Novel Fluorinated Benzyl Carbamates of 4-Aminosalicylanilides" Chemistry Proceedings 3, no. 1: 32. https://doi.org/10.3390/ecsoc-24-08094
APA StyleJankech, T., Pindjakova, D., Kos, J., Hutta, M., & Jampilek, J. (2021). Preparation and Hydro-Lipophilic Properties of Novel Fluorinated Benzyl Carbamates of 4-Aminosalicylanilides. Chemistry Proceedings, 3(1), 32. https://doi.org/10.3390/ecsoc-24-08094