Synthesis of Myrtenal through Allylic Oxidation of α-Pinene over a Pd/SeO2/SiO2 Catalyst †
Abstract
:1. Introduction
2. Experimental
2.1. Catalyst Synthesis and Characterization
2.2. Liquid Phase Oxidation of α-Pinene
3. Results and Discussion
3.1. Preparation and Characterization
3.2. Catalytic Test
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Nakamaura, A.; Nakada, M. Allylic oxidations in natural product synthesis. Synthesis 2013, 45, 1421–1451. [Google Scholar] [CrossRef]
- Bulman, P.C.; McCarthy, T.J. Oxidation adjacent to C=C bonds. In Comprehensive Organic Synthesis, 1st ed.; Trost, B.M., Fleming, I., Eds.; Pergamon Press: Kidlington, Oxford, UK, 1991; Volume 7, pp. 83–117. [Google Scholar] [CrossRef]
- Mlochowski, J.; Wójtowicz-Mlochowska, H. Developments in synthetic application of selenium (IV) oxide and organoselenium compounds as oxygen donors and oxygen-transfer agents. Molecules 2015, 20, 10205–10243. [Google Scholar] [CrossRef] [PubMed]
- Lempers, H.E.B.; Sheldon, R.A. Allylic oxidation of olefins to the corresponding α,β-unsaturated ketones catalyzed by chromium aluminophosphate-5. Appl. Catal. A 1996, 143, 137–143. [Google Scholar] [CrossRef]
- Tagawa, Y.; Yamashita, K.; Higuchi, Y.; Goto, Y. Improved oxidation of active methyl group of N-heteroaromatic compounds by selenium dioxide in the presence of tert-butyl hydroperoxide. Heterocycles 2003, 60, 953–957. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Arends, I.; Hanefeld, U. Green Chemistry and Catalysis, 1st ed.; Wiley-VCH: Weinheim, Germany, 2007; pp. 1–43. [Google Scholar]
- Noma, Y.; Asakawa, Y. Biotransformation of monoterpenoids by microorganisms, insects, and mammals. In Handbook of Essential Oils: Science, Technology, and Applications, 1st ed.; Can Baser, K.H., Buchbauer, G., Eds.; CCR Press: Boca Raton, FL, USA, 2010; Volume 1, pp. 585–736. [Google Scholar]
- Noma, Y.; Asakawa, Y. Biotransformation of monoterpenoids. In Comprehensive Natural Products II: Chemistry and Biology, 1st ed.; Mander, L., Liu, H.W., Eds.; Elsevier: Kidlington, Oxford, UK, 2010; Volume 1, pp. 669–801. [Google Scholar] [CrossRef]
- Rauchdi, M.; Ali, M.A.; Roucoux, A.; Denicourt-Nowicki, A. Novel access to verbenone via ruthenium nanoparticles-catalyzed oxidation of α-pinene in neat water. Appl. Catal. A 2018, 550, 266–273. [Google Scholar] [CrossRef]
- Kuznetsova, L.I.; Kuznetsova, N.I.; Lisitsyn, A.S.; Beck, I.E.; Likholobov, V.A.; Ancel, J.E. Liquid-phase oxidation of α-pinene with oxygen catalyzed by carbon-supported platinum metals. Kinet. Catal 2007, 48, 44–50. [Google Scholar] [CrossRef]
- Kholdeeva, O.A.; Skobelev, I.Y.; Ivanchikova, I.D.; Kovalenko, K.A.; Fedin, V.P.; Sorokin, A.B. Hydrocarbon oxidation over Fe- and Cr-containing metal-organicframeworks MIL-100 and MIL-101–a comparative study. Catal. Today 2014, 238, 54–61. [Google Scholar] [CrossRef]
- Singh, J.; Sharma, M.; Kad, G.L.; Chhabra, B.R. Selective oxidation of allylic methyl groups over a solid support under microwave irradiation. J. Chem. Res. 1997, 7, 264–265. [Google Scholar] [CrossRef]
- Khan, A.S.; Khalid, H.; Sarfraz, Z.; Khan, M.; Iqbal, J.; Muhammad, N.; Fareed, M.A.; ur Rehman, I. Vibrational spectroscopy of selective dental restorative materials. Appl. Spectrosc. Rev. 2016, 52, 507–540. [Google Scholar] [CrossRef]
- Falk, M.; Giguére, P.A. Infrared spectra and structure of selenious acid. Can. J. Chem 1958, 36, 1680–1685. [Google Scholar] [CrossRef]
- Piqueras, C.M.; Puccia, V.; Vega, D.A.; Volpe, M.A. Selective hydrogenation of cinnamaldehyde in supercritical CO2 over Me–CeO2 (Me = Cu, Pt, Au): Insight of the role of Me–Ce interaction. Appl. Catal. B. Env. 2016, 185, 265–271. [Google Scholar] [CrossRef]
- Ayyasamy, R.; Leelavinothan, P. Myrtenal alleviates hyperglycaemia, hyperlipidaemia and improves pancreatic insulin level in STZ-induced diabetic rats. Pharm. Biol. 2016, 54, 2521–2527. [Google Scholar] [CrossRef] [PubMed]
- Babu, L.H.; Perumal, S.; Balasubramanian, M.P. Myrtenal, a natural monoterpene, down-regulates TNF-α expression and suppresses carcinogen-induced hepatocellular carcinoma in rats. Mol. Cell. Biochem. 2012, 369, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.S.; Duan, W.G.; Yang, L.X.; Huang, M.; Lei, F.H. Synthesis and antifungal activity of novel myrtenal-based 4-methyl-1,2,4-triazole-thioethers. Molecules 2017, 22, 193. [Google Scholar] [CrossRef] [PubMed]
- Burgueño-Tapia, E.; Zepeda, G.L.; Joseph-Nathan, P. Absolute configuration of (-)-myrtenal by vibrational circular dichroism. Phytochemistry 2010, 71, 1158–1161. [Google Scholar] [CrossRef] [PubMed]
- Gomes, B.S.; Neto, B.P.S.; Lopes, E.M.; Cunha, F.V.M.; Araújo, A.R.; Wanderley, C.W.S.; Wong, D.V.T.; Júnior, R.C.P.L.; Ribeiro, R.A.; Sousa, D.P.; et al. Anti-inflammatory effect of the monoterpene myrtenol is dependent on the direct modulation of neutrophil migration and oxidative stress. Chem. Biol. Interact. 2017, 273, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.O.; Salvadori, M.S.; Sousa, F.B.M.; Santos, M.S.; Carvalho, N.S.; Sousa, D.P.; Gomes, B.S.; Oliveira, F.A.; Barbosa, A.L.R.; Freitas, R.M.; et al. Evaluation of the anti-inflammatory and antinociceptive effects of myrtenol, a plant derived monoterpene alcohol, in mice. Flavour. Fragr. J. 2014, 29, 184–192. [Google Scholar] [CrossRef]
Entry | Time (h) | X b (%) | S ol c (%) | S al d (%) |
---|---|---|---|---|
1 | 5 | 18 | 72 | 28 |
2 | 7 | 23 | 65 | 35 |
3 | 9 | 34 | 59 | 41 |
4 | 11 | 41 | 56 | 44 |
5 | 13 | 50 | 44 | 56 |
Entry | Time (h) | X b (%) | S ol c (%) | S al d (%) |
---|---|---|---|---|
1 | 2 | 5 | 58 | 42 |
2 | 3.5 | 21 | 29 | 71 |
3 | 5 | 41 | 16 | 84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musso, F.A.; Gutiérrez, V.S.; Volpe, M.A.; Faraoni, M.B. Synthesis of Myrtenal through Allylic Oxidation of α-Pinene over a Pd/SeO2/SiO2 Catalyst. Chem. Proc. 2021, 3, 43. https://doi.org/10.3390/ecsoc-24-08382
Musso FA, Gutiérrez VS, Volpe MA, Faraoni MB. Synthesis of Myrtenal through Allylic Oxidation of α-Pinene over a Pd/SeO2/SiO2 Catalyst. Chemistry Proceedings. 2021; 3(1):43. https://doi.org/10.3390/ecsoc-24-08382
Chicago/Turabian StyleMusso, Florencia Antonella, Victoria Soledad Gutiérrez, María Alicia Volpe, and María Belén Faraoni. 2021. "Synthesis of Myrtenal through Allylic Oxidation of α-Pinene over a Pd/SeO2/SiO2 Catalyst" Chemistry Proceedings 3, no. 1: 43. https://doi.org/10.3390/ecsoc-24-08382
APA StyleMusso, F. A., Gutiérrez, V. S., Volpe, M. A., & Faraoni, M. B. (2021). Synthesis of Myrtenal through Allylic Oxidation of α-Pinene over a Pd/SeO2/SiO2 Catalyst. Chemistry Proceedings, 3(1), 43. https://doi.org/10.3390/ecsoc-24-08382