Cycloaddition of Thiourea- and Guanidine-Substituted Furans to Dienophiles: A Comparison of the Environmentally-Friendly Methods †
Abstract
:1. Introduction
2. Materials and Methods
Reaction Conditions
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bur, S.; Padwa, A. [4+2] Cycloaddition chemistry of substituted furans. In Methods and Applications of Cycloaddition Reactions in Organic Syntheses, 1st ed.; Nishiwaki, N., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; pp. 355–406. [Google Scholar] [CrossRef]
- Margetić, D.; Ishikawa, T.; Kumamoto, T. Exceptional Superbasicity of Bis(guanidine) Proton Sponges Imposed by theBis(secododecahedrane) Molecular Scaffold: A Computational Study. Eur. J. Org. Chem. 2010, 6563–6572. [Google Scholar] [CrossRef]
- Hackenberger, C.P.R.; Schiffers, I.; Runsink, J.; Bolm, C. General synthesis of unsymmetrical norbornane scaffolds as inducers for hydrogen bond interactions in peptides. J. Org. Chem. 2004, 69, 739–743. [Google Scholar] [CrossRef] [PubMed]
- Briš, A.; Trošelj, P.; Margetić, D.; Flamigniband, L.; Ventura, B. Photoinduced processes in self-assemblies of bis-porphyrinic tweezers with an axially coordinated bispyridinofullerene. ChemPlusChem 2016, 81, 985–994, Margetić, D. Host-guest studies of bis-porphyrins. Curr. Org. Chem. 2012, 16, 829–851. [Google Scholar] [CrossRef] [PubMed]
- Glasovac, Z.; Eckert-Maksić, M.; Kaljurand, I.; Saame, J.; Leito, I. Gas phase basicity of biguanides – Comparison of the equilibrium and the kinetic methods. Int. J. Mass Spectrom. 2019, 435, 61–68. [Google Scholar] [CrossRef]
- Glasovac, Z.; Trošelj, P.; Jušinski, I.; Margetić, D.; Eckert-Maksić, M. Synthesis of Highly Basic Hexasubstituted Biguanides by Environmentally Friendly Methods. Synlett 2013, 24, 2540–2544. [Google Scholar] [CrossRef]
- Milbeo, P.; Moulat, L.; Didierjean, C.; Aubert, E.; Martinez, J.; Calmès, M. Synthesis of enantiopure 1,2-diaminobicyclo[2.2.2]octane derivatives, C1-symmetric chiral 1,2-diamines with a rigid bicyclic backbone. J. Org. Chem. 2017, 82, 3144–3151. [Google Scholar] [CrossRef]
- Alonso-Moreno, C.; Antiñolo, A.; Carrillo-Hermosilla, F.; Otero, A. Guanidines: From classical approaches to efficient catalytic syntheses. Chem. Soc. Rev. 2014, 43, 3406–3425. [Google Scholar] [CrossRef]
- Thomson, C.J.; Barber, D.M.; Dixon, D.J. Catalytic Enantioselective Direct Aldol Addition of Aryl Ketones to -Fluorinated Ketones. Angew. Chem. Int. Ed. 2020, 59, 5359–5364. [Google Scholar] [CrossRef]
- Kondoh, A.; Oishi, M.; Tezuka, H.; Terada, M. Development of Chiral Organosuperbase Catalysts Consisting of Two Different Organobase Functionalities. Angew. Chem. Int. Ed. 2020, 59, 7472–7477. [Google Scholar] [CrossRef]
- Guest, M.; Le Sueur, R.; Pilkington, M.; Dudding, T. Development of an Unsymmetrical Cyclopropenimine-Guanidine Platform for Accessing Strongly Basic Proton Sponges and Boron-Difluoride Diaminonaphthalene Fluorophores. Chem. Eur. J. 2020, 26, 8608–8620. [Google Scholar] [CrossRef]
- Antol, I.; Barešić, L.; Glasovac, Z.; Margetić, D. Computational Study of Electronic Influence of Guanidine Substitution on Diels-Alder Reactions of Heterocyclic Dienes. Croat. Chem. Acta 2019, 92, 279–286. [Google Scholar] [CrossRef]
- Margetić, D. (Ed.) Influence of high pressure on organic reactions including cycloadditions is nicely covered. In High Pressure Organic Synthesis; Walter de Gruyter GmbH: Berlin/Boston, Germany, 2019. [Google Scholar] [CrossRef]
- Margetić, D. Microwave Assisted Cycloaddition Reactions; Nova Science Publishers Inc.: New York, NY, USA, 2012. [Google Scholar]
- Margetić, D.; Štrukil, V. Mechanochemical Organic Synthesis; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 283–292. [Google Scholar] [CrossRef]
- Cravotto, G.; Cintas, P. Power ultrasound in organic synthesis: Moving cavitational chemistry from academia to innovative and large-scale applications. Chem. Soc. Rev. 2006, 35, 180–196. [Google Scholar] [CrossRef] [PubMed]
- Wei, K.; Gao, H.-T.; Li, W.-D.Z. Facile Synthesis of Oxabicyclic Alkenes by Ultrasonication-Promoted Diels−Alder Cycloaddition of Furano Dienes. J. Org. Chem. 2004, 69, 5763–5765. [Google Scholar] [CrossRef] [PubMed]
- Chankeshwara, S.V.; Chakraborti, A.K. Catalyst-Free Chemoselective N-tert-Butyloxycarbonylation of Amines in Water. Org. Lett. 2006, 8, 3259–3262. [Google Scholar] [CrossRef] [PubMed]
- Padwa, A.; Dimitroff, M.; Waterson, A.G.; Wu, T. Diels-Alder Reaction of 2-Amino-Substituted Furans as a Method for Preparing Substituted Anilines. J. Org. Chem. 1997, 62, 4088–4096. [Google Scholar] [CrossRef]
- Đud, M.; Glasovac, Z.; Margetić, D. The utilization of ball milling in synthesis of aryl guanidines through guanidinylation and N-Boc-deprotection sequence. Tetrahedron 2019, 75, 109–115. [Google Scholar] [CrossRef]
- Kim, K.S.; Qian, L. Improved Method for the Preparation of Guanidines. Tetrahedron Lett. 1993, 34, 7677–7680. [Google Scholar] [CrossRef]
- Glasovac, Z.; Pavošević, F.; Štrukil, V.; Eckert-Maksić, M.; Schlangen, M.; Kretschmer, R. Toward extension of the gas-phase basicity scale by novel pyridine containing guanidines. Int. J. Mass Spectrom. 2013, 354, 113–122. [Google Scholar] [CrossRef]
- Guchhait, S.K.; Hura, N.; Shah, A.P. Synthesis of Polysubstituted 2-Aminoimidazoles via Alkene-Diamination of Guanidine with Conjugated α-Bromoalkenones. J. Org. Chem. 2017, 82, 2745–2752. [Google Scholar] [CrossRef]
- Zubkov, F.I.; Kvyatkovskaya, E.A.; Nikitina, E.V.; Amoyaw, P.N.-A.; Kouznetsov, V.V.; Lazarenko, V.A. Khrustalev V.N. Comment on “An unexpected formation of the novel 7-oxa-2-azabicyclo[2.2.1]hept-5-ene skeleton during the reaction of furfurylamine with maleimides and their bioprospection using a zebrafish embryo model” by CE Puerto Galvis and VV Kouznetsov, Org. Biomol. Chem. 2013, 11, 407. Org. Biomol. Chem. 2017, 15, 6447–6450. [Google Scholar] [CrossRef]
- Acheson, R.M.; Wallis, J.D. Addition Reactions of Heterocyclic Compounds. Part 74. Products frorn Dimethyl Acetylenedicarboxylate with Thiourea, Thioamide, and Guanidine Derivatives. J. Chem. Soc. Perkin Trans 1981, 1, 415–422. [Google Scholar] [CrossRef]
Entry |
Diene/ Adduct | Dienophile | Method | exo: endo | Conv./% | Yield/% |
---|---|---|---|---|---|---|
Furfuryl derivatives | ||||||
1 | 1/9 | MA | C | 1: 0.1 | 66 | 62 |
2 | 1/9 | MA | HSVM | 1: 0.0 | 91 | 90 |
3 | 1/9 | MA | US | 1: 0.1 | 77 | 63 |
4 | 1/9 | MA | HP | 1: 0.2 | 97 | 92 |
5 | 1/9 | MA | MW | 1: 0.5 | 69 | 67 |
6 | 1/10 | NPMI | C | 1: 1.4 | 79 | 57 |
7 | 1/10 | NPMI | HSVM | 1: 1.3 | (>98) 2 | 57 |
8 | 1/10 | NPMI | US | 1: 1.1 | >98 | 83 |
9 | 1/10 | NPMI | HP | 1: 1.8 | 50 | 42 |
10 | 1/10 | NPMI | MW | 1: 0.8 | >98 | 84 |
11 | 2/11 | MA | HP, HSVM | n/d 3 | n/d 3 | n/d 3 |
12 | 2/12 | NPMI | C | 1: 1.1 | 93 | 81 |
13 | 2/12 | NPMI | HSVM | 1: 1.0 | >98 | 74 |
14 | 2/12 | NPMI | US | 1: 1.8 | (>98) 2 | 52 |
15 | 2/12 | NPMI | HP | 1: 1.1 | 89 | 78 |
16 | 2/12 | NPMI | MW | 1: 1.1 | (87) | 53 |
17 | 3/13 | MA | C | 1: 2.0 | 25 | 20 |
18 | 3/13 | MA | HSVM | 1: 2.6 | (83) | 46 |
19 | 3/13 | MA | US | 1: 0.2 | 46 | n/d |
20 | 3/13 | MA | HP | 1: 2.0 | 73 | 68 |
21 | 3/13 | MA | MW | 1: 0.4 | 21 | n/d |
22 | 3/14 | NPMI | C | 1: 1.0 | 36 | 33 |
23 | 3/14 | NPMI | HSVM | 1: 1.4 | >98 | 62 |
24 | 3/14 | NPMI | US | 1: 1.0 | 77 | 75 |
25 | 3/14 | NPMI | HP | 1: 0.7 | >98 | 88 |
26 | 3/14 | NPMI | MW | 1: 0.8 | 75 | 70 |
27 | 4/15 | MA | C | n/o | (>98) 2 | 11 4 |
28 | 4/16 | NPMI | C | n/o | (>98) 2 | 57 4 |
29 | 4H+/17 | NPMI | C | 1: 1.4 | 31 | n/d 5 |
30 | 4H+/17 | NPMI | HSVM | 1: 1.5 | >98 | n/d 5 |
31 | 4H+/17 | NPMI | US | 1: 1.6 | 30 | n/d 5 |
32 | 4H+/17 | NPMI | HP | 1: 1.0 | 30 | n/d 5 |
33 | 4H+/17 | NPMI | MW | 1: 0.5 | 46 | n/d 5 |
Furanyl derivatives | ||||||
34 | 5/18 | MA | C or HP | n/d | n/d | 44 (ar) 1,6 |
35 | 5/19 | NPMI | C | 1: 0.08 7 | n/d | 38.7 |
36 | 6/20 | NPMI | HP | n/o 8 | ~75 8 | n/d 8 |
37 | 7/21 | NPMI | all methods | n/d | 0 | n/r |
38 | 8/22 | NPMI | C | n/d | (>98) | 64 (ar) 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barešić, L.; Margetić, D.; Glasovac, Z. Cycloaddition of Thiourea- and Guanidine-Substituted Furans to Dienophiles: A Comparison of the Environmentally-Friendly Methods. Chem. Proc. 2021, 3, 57. https://doi.org/10.3390/ecsoc-24-08380
Barešić L, Margetić D, Glasovac Z. Cycloaddition of Thiourea- and Guanidine-Substituted Furans to Dienophiles: A Comparison of the Environmentally-Friendly Methods. Chemistry Proceedings. 2021; 3(1):57. https://doi.org/10.3390/ecsoc-24-08380
Chicago/Turabian StyleBarešić, Luka, Davor Margetić, and Zoran Glasovac. 2021. "Cycloaddition of Thiourea- and Guanidine-Substituted Furans to Dienophiles: A Comparison of the Environmentally-Friendly Methods" Chemistry Proceedings 3, no. 1: 57. https://doi.org/10.3390/ecsoc-24-08380
APA StyleBarešić, L., Margetić, D., & Glasovac, Z. (2021). Cycloaddition of Thiourea- and Guanidine-Substituted Furans to Dienophiles: A Comparison of the Environmentally-Friendly Methods. Chemistry Proceedings, 3(1), 57. https://doi.org/10.3390/ecsoc-24-08380