Lead Finding from Plant Cymbopogon Citratus with Immunomodulator Potentials through in Silico Methods †
Abstract
:1. Introduction: Research Background
2. Material and Methods
2.1. Lemon Grass
2.2. Chemical Composition of Lemon Grass
2.3. Process
3. Results and Discussion
3.1. Evaluation of Drug Likeness
3.2. Potency of Compounds According to Obtained Data
3.2.1. Number of Violations
3.2.2. Molecular Weight
4. Conclusions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
References
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Del. Rev. 1997, 23, 4–25. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, S.; Lipper, R.A. Role of the Development Scientist in Compound Lead Selection and Optimization. J. Pharm. Sci. 2000, 89, 145–154. [Google Scholar] [CrossRef]
- Gupta, I.; Gupta, V.; Parihar, A.; Gupta, S.; Lüdtke, R.; Safayhi, H.; Ammon, H.P. Effects of Boswellia serrata gum resin in patients with bronchial asthma: Results of a double-blind, placebo-controlled, 6-week clinical study. Eur. J. Med. Res. 1998, 3, 511–514. [Google Scholar] [PubMed]
- Lemongrass. Available online: https://en.wikipedia.org/wiki/Cymbopogon (accessed on 24 September 2020).
- Sarer, E.; Scheffer, J.J.; Baerheim, S.A. Composition of the essential oil of Cymbopogon citratus (DC.) Stapf cultivated in Turkey. Sci. Pharm. 1983, 51, 58–63. [Google Scholar]
- Da Rauber, C.S.; Guterres, S.S.; Schapoval, E.E. LC determination of citral in Cymbopogon citratus volatile oil. J. Pharm. Biomed. Anal. 2005, 37, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Negrelle, R.R.B.; Gomes, E.C. Cymbopogon citratus (DC.) Stapf: Chemical composition and biological activities. Rev. Bras. Plantas Med. 2007, 9, 80–92. [Google Scholar]
- Moore-Neibel, K.; Gerber, C.; Patel, J.; Friedman, M.; Ravishankar, S. Antimicrobial activity of lemongrass oil against Salmonella enterica on organic leafy greens. J. Appl. Microbiol. 2012, 112, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Abegaz, B.; Yohannes, P.G.; Dieter, R.K. Constituents of the Essential Oil of Ethiopian Cymbopogon citratus Stapf. J. Nat. Prod. 1983, 46, 424–426. [Google Scholar] [CrossRef]
- Evans, W.C. Trease and Evans Pharmacognosy, 16th ed.; Elsevier: New York, NY, USA, 2009. [Google Scholar]
- Faruq, M.O. TLC technique in the component characterization and quality determination of Bangladeshi lemongrass oil (Cymbopogon citratus (DC.) Stapf.). Bangladesh J. Sci. Ind. Res. 1994, 29, 27–38. [Google Scholar]
- Miean, K.H.; Mohamed, S. Flavonoid (Myricetin, Quercetin, Kaempferol, Luteolin, and Apigenin) Content of Edible Tropical Plants. J. Agric. Food Chem. 2001, 49, 3106–3112. [Google Scholar] [CrossRef] [PubMed]
- Akhila, A. Essential Oil Bearing Plants: The Genus Cymbopogon; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Cheel, J.; Theoduloz, C.; Rodríguez, J.; Schmeda-Hirschmann, G. Free Radical Scavengers and Antioxidants from Lemongrass (Cymbopogon citratus (DC.) Stapf.). J. Agric. Food Chem. 2005, 53, 2511–2517. [Google Scholar] [CrossRef] [PubMed]
- Bharti, S.K.; Kumar, A.; Prakash, O.; Krishnan, S.; Gupta, A.K. Essential Oil of Cymbopogon Citratus against Diabetes: Validation by In vivo Experiments and Computational Studies. J. Bioanal. Biomed. 2013, 5, 194–203. [Google Scholar] [CrossRef]
- Aftab, K.; Ali, M.D.; Aijaz, P.; Beena, N.; Gulzar, H.J.; Sheikh, K.; Tahir Abbas, S. Determination of different trace and essential element in lemon grass samples by x-ray fluorescence spectroscopy technique. Int. Food Res. J. 2011, 18, 265–270. [Google Scholar]
- Khan, S.A.; Kumar, S.; Maqsood, A.M. Virtual Screening of Molecular Properties and Bioactivity Score of Boswellic Acid Derivatives in Search of Potent Anti-Inflammatory Lead Molecule. Int. J. Interdiscip. Multidiscip. Stud. 2013, 1, 8–12. [Google Scholar]
Sr. No. | Compounds | Milog P | TPSA | N Atoms | MW | N ON | N OHNH | nViolations | N Rotb | Volume |
---|---|---|---|---|---|---|---|---|---|---|
1. | Citral | 3.65 | 17.07 | 11 | 152.24 | 1 | 0 | 0 | 4 | 169.74 |
2. | Geranial (alpha-citral) | 3.65 | 17.07 | 11 | 154.25 | 1 | 0 | 0 | 4 | 169.74 |
3. | Neral (beta-citral) | 3.65 | 17.07 | 11 | 152.23 | 1 | 0 | 0 | 4 | 169.74 |
4. | Myracene | 3.99 | 0.00 | 10 | 136.24 | 0 | 0 | 0 | 4 | 162.24 |
5. | Geraniol | 3.20 | 20.23 | 11 | 154.25 | 1 | 1 | 0 | 4 | 175.57 |
6. | Nerol | 3.20 | 20.23 | 11 | 153.23 | 1 | 1 | 0 | 4 | 175.57 |
7. | Citronellol | 3.15 | 20.23 | 11 | 156.27 | 1 | 1 | 0 | 5 | 181.79 |
8. | Limonene | 3.62 | 0.00 | 10 | 136.24 | 0 | 0 | 0 | 1 | 157.30 |
9. | Alpha-Terpinolene | 2.60 | 20.23 | 11 | 154.25 | 1 | 1 | 0 | 1 | 170.65 |
10. | Geranyl acetate | 3.91 | 26.30 | 14 | 196.29 | 2 | 0 | 0 | 6 | 212.09 |
Sr. No. | Compounds | GPCR Ligand | Ion channel Modulator | Kinase Inhibitor | Nuclear Receptor Ligand | Protease Inhibitor | Enzyme Inhibitor |
---|---|---|---|---|---|---|---|
1. | Citral | −0.86 | −0.25 | −1.29 | −0.42 | −0.57 | 0.02 |
2. | Geranial (alpha-citral) | −0.86 | −0.25 | −1.29 | −0.42 | −0.57 | 0.02 |
3. | Neral (beta-citral) | −0.86 | −0.25 | −1.29 | −0.42 | −0.57 | 0.02 |
4. | Myracene | −1.11 | −0.33 | −1.51 | −0.45 | −1.31 | −0.07 |
5. | Geraniol | −0.60 | 0.07 | −1.32 | −0.20 | −1.03 | 0.28 |
6. | Nerol | −0.60 | 0.07 | −1.32 | −0.20 | −1.03 | 0.28 |
7. | Citronellol | −0.81 | −0.24 | −1.16 | −0.61 | −0.83 | −0.12 |
8. | Limonene | −0.91 | −0.27 | −2.01 | −0.34 | −1.38 | −0.21 |
9. | Alpha-Terpineol | −0.51 | 0.15 | −1.45 | −0.02 | −0.78 | 0.14 |
10. | Geranyl acetate | -0.50 | 0.04 | −1.11 | -0.12 | -0.80 | 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waghulde, S.; Parmar, P.; Mule, J.; Pashte, D.; Patil, B.; Modhale, N.; Gorde, N.; Kharche, A.; Kale, M. Lead Finding from Plant Cymbopogon Citratus with Immunomodulator Potentials through in Silico Methods. Chem. Proc. 2021, 3, 77. https://doi.org/10.3390/ecsoc-24-08302
Waghulde S, Parmar P, Mule J, Pashte D, Patil B, Modhale N, Gorde N, Kharche A, Kale M. Lead Finding from Plant Cymbopogon Citratus with Immunomodulator Potentials through in Silico Methods. Chemistry Proceedings. 2021; 3(1):77. https://doi.org/10.3390/ecsoc-24-08302
Chicago/Turabian StyleWaghulde, Sandeep, Prutha Parmar, Jasraj Mule, Diksha Pashte, Bhakti Patil, Namrata Modhale, Nilesh Gorde, Ajay Kharche, and Mohan Kale. 2021. "Lead Finding from Plant Cymbopogon Citratus with Immunomodulator Potentials through in Silico Methods" Chemistry Proceedings 3, no. 1: 77. https://doi.org/10.3390/ecsoc-24-08302
APA StyleWaghulde, S., Parmar, P., Mule, J., Pashte, D., Patil, B., Modhale, N., Gorde, N., Kharche, A., & Kale, M. (2021). Lead Finding from Plant Cymbopogon Citratus with Immunomodulator Potentials through in Silico Methods. Chemistry Proceedings, 3(1), 77. https://doi.org/10.3390/ecsoc-24-08302