In Silico Studies on Acetylcholine Receptor Subunit Alpha-L1 for Proposal of Novel Insecticides against Aphis craccivora †
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CIE. Distribution Maps of Plant Pests, No. 99; CAB International: Wallingford, UK, 1983. [Google Scholar]
- Mayeux, A. The groundnut aphid. Biology and control. Oleagineux 1984, 39, 425–434. [Google Scholar]
- CABI. Invasive Species Compendium. Available online: https://www.cabi.org/isc/datasheet/6192#38F61CAB-1521-41AB-9EC9-8E3C2F494D5B (accessed on 5 November 2020).
- Dhingra, S. Development of resistance in the bean aphid, Aphis craccivora Koch, to various insecticides used for nearly a quarter century. J. Entomol. Res. 1994, 18, 105–108. [Google Scholar]
- European, Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment for bees for the active substance imidacloprid. EFSA J. 2013, 11, 3068. [Google Scholar] [CrossRef]
- Tomizawa, M.; Casida, J.E. Neonicotinoid Insecticide Toxicology: Mechanisms of Selective Action. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 247–268. [Google Scholar] [CrossRef] [PubMed]
- Muth, F.; Leonard, A.S. A neonicotinoid pesticide impairs foraging, but not learning, in free-flying bumblebees. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef]
- Wang, F.; Yang, J.-F.; Wang, M.-Y.; Jia, C.-Y.; Shi, X.-X.; Hao, G.-F.; Yang, G.-F. Graph attention convolutional neural network model for chemical poisoning of honey bees’ prediction. Sci. Bull. 2020, 65, 1184–1191. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Studer, G.; Rempfer, C.; Waterhouse, A.M.; Gumienny, G.; Haas, J.; Schwede, T. QMEANDisCo—Distance constraints ap-plied on model quality estimation. Bioinformatics 2020, 36, 1765–1771. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 1997, 18, 2714–2723. [Google Scholar] [CrossRef]
- Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK—A program to check the stereochemical quality of protein structures. J. App. Cryst. 1993, 26, 283–291. [Google Scholar] [CrossRef]
- Hou, S.; Zhuang, Y.; Deng, Y.; Xu, X. Photostability study of cis-configuration neonicotinoid insecticide cycloxaprid in water. J. Environ. Sci. Health B 2017, 52, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Zou, M.; Tian, X.; Chen, N.; Shao, X. Nematicidal Activity of Sprio and Bridged Heterocyclic Neonicotinoid Analogues against Meloidogyne incognita. Lett. Drug Des. Discov. 2015, 12, 439–445. [Google Scholar] [CrossRef]
- Fu, Q.; Zhang, J.; Xu, X.; Wang, H.; Wang, W.; Ye, Q.; Li, Z. Diastereoselective Metabolism of a Novel Cis-Nitromethylene Neonicotinoid Paichongding in Aerobic Soils. Environ. Sci. Technol. 2013, 47, 10389–10396. [Google Scholar] [CrossRef]
- Xu, T.; Wang, X.; Zhang, Q.; Fan, J.; Liu, L.; Liu, M.; Zhang, H.; Li, J.; Guo, Y. Iodine-mediated oxidative cyclization for one pot synthesis of new 8-hydroxyquinaldine derivatives containing a N-phenylpyrazole moiety as pesticidal agents. Bioorg. Med. Chem. Lett. 2018, 28, 3376–3380. [Google Scholar] [CrossRef]
- Kong, W.; Bao, Y.; Ma, Q.; Xu, H. Synthesis and biological activities of novel pyrazolomatrine derivatives. Bioorg. Med. Chem. Lett. 2018, 28, 3338–3341. [Google Scholar] [CrossRef]
- Dai, H.; Chen, J.; Li, G.; Ge, S.; Shi, Y.; Fang, Y.; Ling, Y. Design, synthesis, and bioactivities of novel oxadiazole-substituted pyrazole oximes. Bioorg. Med. Chem. Lett. 2017, 27, 950–953. [Google Scholar] [CrossRef]
- Dai, H.; Ge, S.; Guo, J.; Chen, S.; Huang, M.; Yang, J.; Sun, S.; Ling, Y.; Shi, Y. Development of novel bis-pyrazole derivatives as antitumor agents with potent apoptosis induction effects and DNA damage. Eur. J. Med. Chem. 2018, 143, 1066–1076. [Google Scholar] [CrossRef]
- Chen, C.; Chen, J.; Gu, H.; Bao, N.; Dai, H. Design, Synthesis, and Biological Activities of Novel Pyrazole Oxime Com-pounds Containing a Substituted Pyridyl Moiety. Molecules 2017, 22, 878. [Google Scholar] [CrossRef]
- Bavadi, M.; Niknam, K.; Shahraki, O. Novel pyrrole derivatives bearing sulfonamide groups: Synthesis in vitro cytotoxicity evaluation, molecular docking and DFT study. J. Mol. Struct. 2017, 1146, 242–253. [Google Scholar] [CrossRef]
- Jeanmart, S.A.M.; Edmunds, A.J.; Lamberth, C.; Pouliot, M. Synthetic approaches to the 2010–2014 new agrochemicals. Bioorg. Med. Chem. 2016, 24, 317–341. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Wang, Y.; Li, W.; Li, Q.; Luo, P.; Ye, Q. Nonstereoselective foliar absorption and translocation of cycloxaprid, a novel chiral neonicotinoid, in Chinese cabbage. Environ. Pollut. 2019, 252, 1593–1598. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.-W.; Wang, J.; Wu, Y.; Nan, S.-B.; Zhang, W.-G. Novel Nitenpyram Analogues with Tetrahydropyridone Fixed Cis-Configuration: Synthesis, Insecticidal Activities, and Molecular Docking Studies. Heterocycles 2013, 87, 1865–1880. [Google Scholar] [CrossRef]
- Du, X.X.; Huang, R.; Yang, C.L.; Lin, J. Synthesis and evaluation of the antitumor activity of highly functionalised pyri-din-2-ones and pyrimidin-4-ones. RSC Adv. 2017, 7, 40067–40073. [Google Scholar] [CrossRef]
- Nishiwaki, H.; Kuriyama, M.; Nagaoka, H.; Kato, A.; Akamatsu, M.; Yamauchi, S.; Shuto, Y. Synthesis of imidacloprid de-rivatives with a chiral alkylated imidazolidine ring and evaluation of their insecticidal activity and affinity to the nicotinic acetylcholine receptor. Bioorg. Med. Chem. 2012, 20, 6305–6312. [Google Scholar] [CrossRef]
- Jiang, D.; Zheng, X.; Shao, G.; Ling, Z.; Xu, H. Discovery of a Novel Series of Phenyl Pyrazole Inner Salts Based on Fipronil as Potential Dual-Target Insecticides. J. Agric. Food Chem. 2014, 62, 3577–3583. [Google Scholar] [CrossRef]
- Liu, S.-H.; Peng, W.; Qu, Y.-Y.; Xu, D.; Li, H.-Y.; Song, D.-L.; Duan, H.-X.; Yang, X.-L. Synthesis, insecticidal activity and molecular docking study of clothianidin analogues with hydrazide group. Chin. Chem. Lett. 2014, 25, 1017–1020. [Google Scholar] [CrossRef]
- Hua, X.; Mao, W.; Fan, Z.; Ji, X.; Li, F.; Zong, G.; Song, H.; Li, J.; Zhou, L.; Zhou, L.; et al. Novel Anthranilic Diamide Insecticides: Design, Synthesis, and Insecticidal Evaluation. Aust. J. Chem. 2014, 67, 1491–1503. [Google Scholar] [CrossRef]
- Shen, H.F.; Chen, X.; Liao, P.; Shao, X.S.; Li, Z.; Xu, X.Y. Design, synthesis, and insecticidal bioactivities evaluation of pyr-role- and dihydropyrrole-fused neonicotinoid analogs containing chlorothiazole ring. Chin. Chem. Lett. 2015, 3245, 1–4. [Google Scholar]
- Liu, J.; Li, Y.; Chen, Y.; Hua, X.; Wan, Y.; Wei, W.; Song, H.; Yu, S.; Zhang, X.; Li, Z. Design, Synthesis, Antifungal Activities and SARs of (R)-2-Aryl-4,5-dihydrothiazole-4-carboxylic Acid Derivatives. Chin. J. Chem. 2015, 33, 1269–1275. [Google Scholar] [CrossRef]
- Liu, J.B.; Li, Y.X.; Zhang, X.L.; Hua, X.W.; Wu, C.C.; Wei, W.; Wan, Y.Y.; Cheng, D.D.; Xiong, L.X.; Yang, N.; et al. Novel An-thranilic Diamide Scaffolds Containing N-Substituted Phenylpyrazole as Potential Ryanodine Receptor Activators. J. Agric. Food Chem. 2016, 64, 3697–3704. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Hu, D.; Lv, M.; Jin, L.; Wu, J.; Zeng, S.; Yang, S.; Song, B. Synthesis, insecticidal, and antibacterial activities of novel neonicotinoid analogs with dihydropyridine. Chem. Cent.J. 2013, 7, 1–6. [Google Scholar] [CrossRef] [PubMed]
- OMEGA. OMEGA 4.0.0.4: OpenEye Scientific Software; OMEGA: Santa Fe, NM, USA, 2019. [Google Scholar]
- Hawkins, P.C.D.; Skillman, A.G.; Warren, G.L.; Ellingson, B.A. StahlMT Conformer generation with OMEGA: Algorithm and validation using high quality structures from the protein databank and Cambridge structural database. J. Chem. Inf. Model. 2010, 50, 572–584. [Google Scholar] [CrossRef]
- FRED. FRED 3.5.0.4: OpenEye Scientific Software; FRED: Santa Fe, NM, USA, 2020. [Google Scholar]
- McGann, M. FRED Pose Prediction and Virtual Screening Accuracy. J. Chem. Inf. Model. 2011, 51, 578–596. [Google Scholar] [CrossRef] [PubMed]
- McGann, M. FRED and HYBRID docking performance on standardized datasets. J. Comput. Mol. Des. 2012, 26, 897–906. [Google Scholar] [CrossRef] [PubMed]
- BIOVIA. Dassault Systèmes, [Discovery Studio Visualizer]; v20.1.0.19295; Dassault Systèmes: San Diego, CA, USA, 2019. [Google Scholar]
- Talley, T.T.; Harel, M.; Hibbs, R.E.; Radic, Z.; Tomizawa, M.; Casida, J.E.; Taylor, P. Atomic interactions of neonicotinoid agonists with AChBP: Molecular recognition of the distinctive electronegative pharmacophore. Proc. Natl. Acad. Sci. USA 2008, 105, 7606–7611. [Google Scholar] [CrossRef] [PubMed]
- Ihara, M.; Okajima, T.; Yamashita, A.; Oda, T.; Hirata, K.; Nishiwaki, H.; Morimoto, T.; Akamatsu, M.; Ashikawa, Y.; Kuroda, S.; et al. Crystal structures of Lymnaea stagnalis AChBP in complex with neonicotinoid insecticides imidacloprid and clothianidin. Invert. Neurosci. 2008, 8, 71–81. [Google Scholar] [CrossRef]
2D Structure | FRED Chemgauss4 Score | Reference |
---|---|---|
−10.759 | 15liu2015 | |
−10.748 | 14bavadi2017 | |
−10.493 | 15bavadi2017 | |
−10.353 | 2jeanmart2016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borota, A.; Crisan, L.; Bora, A.; Funar-Timofei, S. In Silico Studies on Acetylcholine Receptor Subunit Alpha-L1 for Proposal of Novel Insecticides against Aphis craccivora . Chem. Proc. 2021, 3, 8. https://doi.org/10.3390/ecsoc-24-08366
Borota A, Crisan L, Bora A, Funar-Timofei S. In Silico Studies on Acetylcholine Receptor Subunit Alpha-L1 for Proposal of Novel Insecticides against Aphis craccivora . Chemistry Proceedings. 2021; 3(1):8. https://doi.org/10.3390/ecsoc-24-08366
Chicago/Turabian StyleBorota, Ana, Luminita Crisan, Alina Bora, and Simona Funar-Timofei. 2021. "In Silico Studies on Acetylcholine Receptor Subunit Alpha-L1 for Proposal of Novel Insecticides against Aphis craccivora " Chemistry Proceedings 3, no. 1: 8. https://doi.org/10.3390/ecsoc-24-08366
APA StyleBorota, A., Crisan, L., Bora, A., & Funar-Timofei, S. (2021). In Silico Studies on Acetylcholine Receptor Subunit Alpha-L1 for Proposal of Novel Insecticides against Aphis craccivora . Chemistry Proceedings, 3(1), 8. https://doi.org/10.3390/ecsoc-24-08366