Cytotoxicity Studies of Eugenol Amino Alcohols Derivatives †
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Eugenol β-Amino Alcohols Derivatives 3–9
2.2. Toxicity of β-Amino Alcohols Eugenol Derivatives 3–9
2.3. Caspase-3 Activity
3. Experimental
3.1. Cell Culture and Viability Assessment
3.2. Caspase Activity
3.3. DNA Quantification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cragg, G.M.; Newman, D.J. Nature: A vital source of leads for anticancer drug development. Phytochem. Rev. 2009, 8, 313–331. [Google Scholar] [CrossRef]
- Sen, T.; Samanta, S.K. Medicinal plants, human health and biodiversity: A broad review. Adv. Biochem. Eng. Biotechnol. 2015, 147, 59–110. [Google Scholar] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Blowman, K.; Magalhaes, M.; Lemos, M.F.L.; Cabral, C.; Pires, I.M. Anticancer properties of essential oils and other natural products. Evid. Based Complement. Altern. Med. 2018, 2018, 3149362. [Google Scholar] [CrossRef] [PubMed]
- Nehme, R.; Andrés, S.; Pereira, R.B.; Jemaa, M.B.; Bouhallab, S.; Ceciliani, F.; López, S.; Rahali, F.Z.; Ksouri, R.; Pereira, D.M.; et al. Essential oils in livestock: From health to food quality. Antioxidants 2021, 10, 330. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, T.S. The multiple faces of eugenol. A versatile starting material and building block for organic and bio-organic synthesis and a convenient precursor toward bio-based fine chemicals. J. Braz. Chem. Soc. 2015, 26, 1055–1086. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef]
- Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging 2016, 8, 603–619. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, L.; Shi, Z.; Zhao, S.; Wang, F.T.; Zhou, T.T.; Liu, B.; Bao, J.K. Programmed cell death pathways in cancer: A review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012, 45, 487–498. [Google Scholar] [CrossRef] [PubMed]
- D’Arcy, M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int. 2019, 43, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Jaganathan, S.K.; Supriyanto, E. Antiproliferative and molecular mechanism of eugenol-induced apoptosis in cancer cells. Molecules 2012, 17, 6290–6304. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.F.M.; Monte, F.J.Q.; Lemos, T.L.G.; Nascimento, P.G.G.; Costa, A.K.M.; Paiva, L.M.M. Eugenol derivatives: Synthesis, characterization, and evaluation of antibacterial and antioxidant activities. Chem. Cent. J. 2018, 12, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Azizi, N.; Saidi, M.R. Highly chemoselective addition of amines to epoxides in water. Org. Lett. 2015, 7, 3649–3651. [Google Scholar] [CrossRef] [PubMed]
- Pinto, N.F.S.; Fernandes, M.J.G.; Pereira, R.B.; Vieira, T.F.; Rodrigues, A.R.O.; Pereira, D.M.; Sousa, S.F.; Castanheira, E.M.S.; Fortes, A.G.; Gonçalves, M.S.T. Amino alcohols from eugenol as potential semisynthetic insecticides: Chemical, biological and computational insights. Molecules 2021, 26, 6616. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira, C.; Pinto, N.F.S.; Pereira, D.M.; Pereira, R.B.; Fernandes, M.J.G.; Castanheira, E.M.S.; Fortes, A.G.; Gonçalves, M.S.T. Cytotoxicity Studies of Eugenol Amino Alcohols Derivatives. Chem. Proc. 2022, 8, 105. https://doi.org/10.3390/ecsoc-25-11689
Teixeira C, Pinto NFS, Pereira DM, Pereira RB, Fernandes MJG, Castanheira EMS, Fortes AG, Gonçalves MST. Cytotoxicity Studies of Eugenol Amino Alcohols Derivatives. Chemistry Proceedings. 2022; 8(1):105. https://doi.org/10.3390/ecsoc-25-11689
Chicago/Turabian StyleTeixeira, Cláudia, Nuno F. S. Pinto, David M. Pereira, Renato B. Pereira, Maria José G. Fernandes, Elisabete M. S. Castanheira, António Gil Fortes, and Maria Sameiro T. Gonçalves. 2022. "Cytotoxicity Studies of Eugenol Amino Alcohols Derivatives" Chemistry Proceedings 8, no. 1: 105. https://doi.org/10.3390/ecsoc-25-11689
APA StyleTeixeira, C., Pinto, N. F. S., Pereira, D. M., Pereira, R. B., Fernandes, M. J. G., Castanheira, E. M. S., Fortes, A. G., & Gonçalves, M. S. T. (2022). Cytotoxicity Studies of Eugenol Amino Alcohols Derivatives. Chemistry Proceedings, 8(1), 105. https://doi.org/10.3390/ecsoc-25-11689