A Novel Synthetic Approach of Functionalised GO and CNT to Nanocomposite Containing Active Nanostructured Fillers for Classical Isocyanate Curing †
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.2. Characterization of Structure and Surface Morphology
3. Results and Discussion
3.1. Functionalisation, Dispersion of FCNT/GO and Curing of Isocyanate
3.2. Interface Chemistry between GO/FCNT@isocyanatematrix
3.3. Corrosion Inhibition Endowed by Nanocomposite Coatings
3.4. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shankar, A.R.; Kuma, S.; Piana, F.; Mičušík, M.; Pionteck, J.; Banerjee, S.; Voit, B. Preparation of graphite derivatives by selective reduction of graphite oxide and isocyanate functionalization. Mater. Chem. Phys. 2016, 182, 237–245. [Google Scholar]
- Haghdadeh, P.; Ghaffari, M.; Ramezanzadeh, B.; Bahlakeh, G.; Saeb, M.R. Polyurethane coatings reinforced with 3-(triethoxysilyl)propyl isocyanate functionalized graphene oxide nanosheets: Mechanical and anti-corrosion properties. Prog. Org. Coat. 2019, 136, 105243. [Google Scholar] [CrossRef]
- Maher, M.; Alrashed Mark, D.; Soucek Sadhan, C. Jana Role of graphene oxide and functionalized graphene oxide in protective hybrid coatings. Prog. Org. Coat. 2019, 134, 197–208. [Google Scholar]
- Adak, B.; Joshi, M.; Butola, B.S. Polyurethane/functionalized-graphene nanocomposite films with enhanced weather resistance and gas barrier properties. Compos. Part B Eng. 2019, 176, 107303. [Google Scholar] [CrossRef]
- Stankovich, S.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 2006, 44, 3342–3347. [Google Scholar] [CrossRef]
- Chen, G.; Weng, W.; Wu, D.; Wu, C. PMMA/graphite nanosheets composite and its conducting properties. Eur. Polym. J. 2003, 39, 2329–2335. [Google Scholar] [CrossRef]
- McLachlan, D.S.; Chiteme, C.; Park, C.; Wise, K.E.; Lowther, S.E.; Lillehei, P.T.; Siochi, E.J.; Harrison, J.S. B AC and DC percolative conductivity of single wall carbon nanotube polymer composites. J. Polym. Sci. 2005, 43, 3273. [Google Scholar] [CrossRef]
- Berber, S.; Kwon, Y.K.; Tomanek, D. Unusually High Thermal Conductivity of Carbon Nanotubes. Phys. Rev. Lett. 2000, 84, 4613. [Google Scholar] [CrossRef] [Green Version]
- Lourie, O.; Wagner, H.D. Evaluation of Young’s modulus of carbon nanotubes by micro-Raman spectroscopy. J. Mater. Res. 1998, 13, 2418–2422. [Google Scholar] [CrossRef]
- Walters, D.A.; Ericson, L.M.; Casavant, M.J.; Liu, J.; Colbert, D.T.; Smith, K.A.; Smalley, R.E. Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett. 1999, 74, 3803. [Google Scholar] [CrossRef] [Green Version]
- Andrews, R.; Jacques, D.; Rao, A.M.; Rantell, T.; Derbyshire, F.; Chen, Y.; Chen, J.; Haddon, R.C. Nanotube composite carbon fibers. Appl. Phys. Lett. 1999, 75, 1329. [Google Scholar] [CrossRef] [Green Version]
- Bansal, A.; Yang, H.; Li, C.; Cho, K.; Benicewicz, B.C.; Kumar, S.K.; Schadler, L.S. Quantitative equivalence between polymer nanocomposites and thin polymer films. Nat. Mater. 2005, 4, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Schadler, L.S.; Giannaris, S.C.; Ajayan, P.M. Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 1998, 73, 3842. [Google Scholar] [CrossRef]
- Ajayan, P.; Schadler, L.; Giannaries, C.; Rubio, A. Single-walled carbon nanotube–polymer composites: Strength and weakness. Adv. Mater. 2000, 12, 750. [Google Scholar] [CrossRef]
- Sandler, J.; Shaffer, M.S.P.; Prasse, T.; Bauhofer, W.; Schulte, K.; Windle, A.H. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 1999, 40, 5967. [Google Scholar] [CrossRef]
- Vaccarini, L.; Desarmot, G.; Almairac, R.; Tahir, S.; Goze, C.; Bernier, P. Reinforcement of an epoxy resin by single walled nanotubes. AIP Conf. Proc. 2000, 544, 521. [Google Scholar]
- Gong, X.; Liu, J.; Baskaran, S.; Voise, R.D.; Young, J.S. Surfactant-assisted processing of carbon nanotube/polymer composites. Chem. Mater. 2000, 12, 1049. [Google Scholar] [CrossRef]
- Kamae, T.; Drzal, L.T. Carbon fiber/epoxy composite property enhancement through incorporation of carbon nanotubes at the fiber–matrix interphase–Part I: The development of carbon nanotube coated carbon fibers and the evaluation of their adhesion. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1569–1577. [Google Scholar] [CrossRef]
- Cui, G.; Bi, Z.; Zhang, R.; Liu, J.; Yu, X.; Li, Z. A comprehensive review on graphene-based anti-corrosive coatings. Chem. Eng. J. 2019, 373, 104–121. [Google Scholar] [CrossRef]
- Ding, R.; Chen, S.; Lv, J.; Zhang, W.; Zhao, X.; Liu, J.; Wang, X.; Gui, T.; Li, B.; Tang, Y.; et al. Study on graphene modified organic anti-corrosion coatings: A comprehensive review. J. Alloy. Compd. 2019, 806, 611–635. [Google Scholar] [CrossRef]
- Parhizkar, N.; Shahrabi, T.; Ramezanzadeh, B. Journal of the Synthesis and characterization of a unique isocyanate silane reduced graphene oxide nanosheets; Screening the role of multifunctional nanosheets on the adhesion and corrosion protection performance of an amido-amine cured epoxy composite. Taiwan Inst. Chem. Eng. 2018, 82, 281–299. [Google Scholar] [CrossRef]
- Parhizkar, N.; Ramezanzadeh, B.; Shahrabi, T. Corrosion protection and adhesion properties of the epoxy coating applied on the steel substrate pre-treated by a sol-gel based silane coating filled with amino and isocyanate silane functionalized graphene oxide nanosheets. Appl. Surf. Sci. 2018, 439, 45–59. [Google Scholar] [CrossRef]
- Patil, V.; Dennis, R.V.; Rout, T.K.; Banerjee, S.; Yadav, G.D. Graphene oxide and functionalized multi walled carbon nanotubes as epoxy curing agents: A novel synthetic approach to nanocomposites containing active nanostructured fillers. RSC Adv. 2014, 4, 49264–49272. [Google Scholar] [CrossRef]
- Stevens, J.L.; Huang, A.Y.; Peng, H.; Chiang, I.W.; Khabashesku, V.N.; Margrave, J.L. Sidewall Amino-Functionalization of Single-Walled Carbon Nanotubes through Fluorination and Subsequent Reactions with Terminal Diamines. Nano Lett. 2003, 3, 331–336. [Google Scholar] [CrossRef]
- Voevodin, N.N.; Balbyshev, V.N.; Khobaib, M.; Donley, M.S. Nanostructured sol–gel derived conversion coatings based on epoxy-and amino-silanes. Prog. Org. Coat. 2003, 47, 207–213. [Google Scholar]
- Kozlowski, C.; Sherwood, P.M.A. X-ray photoelectron spectroscopic studies of carbon fiber surfaces VIII—A comparison of type I and type II fibers and their interaction with thin resin films. Carbon 1987, 25, 751–760. [Google Scholar] [CrossRef]
- Jones, C. The chemistry of carbon fibre surfaces and its effect on interfacial phenomena in fibre/epoxy composites. Compos. Sci. Technol. 1991, 42, 275–298. [Google Scholar] [CrossRef]
%Weight of GO/FCNT@isocyanate | ||||||||
---|---|---|---|---|---|---|---|---|
GO@isocyanateFCNT@isocyanate | ||||||||
5 | 10 | 25 | 50 | 5 | 10 | 25 | 50 | |
Impact Resistance | Pass | Pass | Pass | Pass | Pass | Pass | Pass | Pass |
Pencil hardness | 4H | 5H | 5H | 5H | 5H | 5H | 5H | 5H |
Flexibility | Pass | Pass | Pass | Pass | Pass | Pass | Pass | Pass |
Adhesion | 3B | 5B | 5B | 5B | 5B | 5B | 5B | 5B |
Scratch Hardness (Kg) | 2.8 | 2.9 | 3.0 | 3.0 | 2.8 | 2.9 | 2.9 | 3.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jadhav, L.; Patil, R.; Borane, N.; Mishra, S.; Yadav, G.D.; Patil, D.B.; Patil, V. A Novel Synthetic Approach of Functionalised GO and CNT to Nanocomposite Containing Active Nanostructured Fillers for Classical Isocyanate Curing. Chem. Proc. 2022, 8, 33. https://doi.org/10.3390/ecsoc-25-11679
Jadhav L, Patil R, Borane N, Mishra S, Yadav GD, Patil DB, Patil V. A Novel Synthetic Approach of Functionalised GO and CNT to Nanocomposite Containing Active Nanostructured Fillers for Classical Isocyanate Curing. Chemistry Proceedings. 2022; 8(1):33. https://doi.org/10.3390/ecsoc-25-11679
Chicago/Turabian StyleJadhav, Lina, Rahul Patil, Nikhil Borane, Satyendra Mishra, Ganapati D. Yadav, Dipak B. Patil, and Vikas Patil. 2022. "A Novel Synthetic Approach of Functionalised GO and CNT to Nanocomposite Containing Active Nanostructured Fillers for Classical Isocyanate Curing" Chemistry Proceedings 8, no. 1: 33. https://doi.org/10.3390/ecsoc-25-11679
APA StyleJadhav, L., Patil, R., Borane, N., Mishra, S., Yadav, G. D., Patil, D. B., & Patil, V. (2022). A Novel Synthetic Approach of Functionalised GO and CNT to Nanocomposite Containing Active Nanostructured Fillers for Classical Isocyanate Curing. Chemistry Proceedings, 8(1), 33. https://doi.org/10.3390/ecsoc-25-11679