Synthesis of Dibenzylbutane and 9,8′-Neo-Lignans via Cyclometalation of Allylbenzene by EtAlCl2 and Mg in the Presence of Zr ansa-Complexes †
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
General Procedures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Dzhemilev, U.M.; Ibragimov, A.G. Metal complex catalysis in the synthesis of organoaluminium compounds. Russ. Chem. Rev. 2000, 69, 121–135. [Google Scholar] [CrossRef]
- D’yakonov, V.A. Dzhemilev Reaction in Organic and Organometallic Synthesis (Chemistry Research and Applications); Nova Science Publishers: New York, NY, USA, 2010; p. 96. [Google Scholar]
- Dzhemilev, U.M.; Ibragimov, A.G.; Morozov, A.B.; Khalilov, L.M.; Muslukhov, R.R.; Tolstikov, G.A. Synthesis and reactions of metallocycles. 6. Stereoselective synthesis of 3,4-dialkyl-substituted aluminocyclopentanes by cyclometallation of α-olefins using trialkylalanes in the presence of Cp2ZrCl2. Russ. Chem. Bull. 1991, 40, 1022–1025. [Google Scholar] [CrossRef]
- Dzhemilev, U.M.; Ibragimov, A.G.; Morozov, A.B. Regio- and Stereo-selective Synthesis of trans-3,4-Dialkyl-substituted Aluminacyclopentanes in the Presence of (η5-C5H5)2ZrCl2. Mendeleev Commun. 1992, 1, 26–28. [Google Scholar] [CrossRef]
- Ibragimov, A.G.; Khafizova, L.O.; Yakovleva, L.G.; Nikitina, E.V.; Satenov, K.G.; Khalilov, L.M.; Dzhemilev, U.M. Synthesis and transformations of metallocycles 19. Synthesis of 3-alkylalumacyclopentanes and 2-alkyl-1,4-dialuminiobutanes on Zr-containing complex catalysts. Russ. Chem. Bull. 1999, 48, 774–780. [Google Scholar] [CrossRef]
- Ayres, D.C.; Loike, J.D. Lignans: Chemical, Biological and Clinical Properties; Cambridge University Press: Cambridge, UK, 1990; p. 426. [Google Scholar]
- Ward, R.S. Lignans, neolignans and related compounds. Nat. Prod. Rep. 1997, 14, 43–74. [Google Scholar] [CrossRef]
- Saleem, M.; Kim, H.J.; Ali, M.S.; Lee, Y.S. An update on bioactive plant lignans. Nat. Prod. Rep. 2005, 22, 696–716. [Google Scholar] [CrossRef]
- Teponno, R.B.; Kusari, S.; Spiteller, M. Recent advances in research on lignans and neolignans. Nat. Prod. Rep. 2016, 33, 1044–1092. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.-Y.; Chen, S.-L.; Yang, M.-H.; Wu, J.; Sinkkonen, J.; Zou, K. An update on lignans: Natural products and synthesis. Nat. Prod. Rep. 2009, 26, 1251–1292. [Google Scholar] [CrossRef]
- Yamauchi, S.; Masuda, T.; Sugahara, T.; Kawaguchi, Y.; Ohuchi, M.; Someya, T.; Akiyama, J.; Tominaga, S.; Yamawaki, M.; Kishida, T.; et al. Antioxidant Activity of Butane Type Lignans, Secoisolariciresinol, Dihydroguaiaretic Acid, and 7,7′-Oxodihydroguaiaretic Acid. Biosci. Biotechnol. Biochem. 2008, 72, 2981–2986. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Yamauchi, S.; Masuda, K.; Nishiwaki, H.; Akiyama, K.; Maruyama, M.; Sugahara, T.; Kishida, T.; Koba, Y. Antimicrobial Activity of Stereoisomers of Butane-Type Lignans. Biosci. Biotechnol. Biochem. 2009, 73, 1806–1810. [Google Scholar] [CrossRef] [Green Version]
- Parfenova, L.V.; Berestova, T.V.; Kovyazin, P.V.; Yakupov, A.R.; Mesheryakova, E.S.; Khalilov, L.M.; Dzhemilev, U.M. Catalytic cyclometallation of allylbenzenes by EtAlCl2 and Mg as new route to synthesis of dibenzyl butane lignans. J. Organomet. Chem. 2014, 772–773, 292–298. [Google Scholar] [CrossRef]
- Parfenova, L.V.; Kovyazin, P.V.; Tyumkina, T.V.; Khalilov, L.M.; Dzhemilev, U.M. Cycloalumination of allylbenzenes with triethylaluminum in the presence of Cp2ZrCl2. One-pot synthesis of 2-benzylbutane-1,4-diols as precursors of dibenzylbutane lignans. Russ. J. Org. Chem. 2016, 52, 1750–1755. [Google Scholar] [CrossRef]
- Wang, B. Ansa-metallocene polymerization catalysts: Effects of the bridges on the catalytic activities. Coord. Chem. Rev. 2006, 250, 242–258. [Google Scholar] [CrossRef]
- Edwards, P.P.; Guy, S.C.; Holton, D.M.; McFarlan, W. Nmr spectrum of Na− in sodium–hexamethylphosphoric triamide solutions. J. Chem. Soc. Chem. Commun. 1981, 22, 1185–1186. [Google Scholar] [CrossRef]
- Jackman, L.M.; Chen, X. Solvation of aggregates of lithium phenolates by hexamethylphosphoric triamide. HMPA causes both aggregation and deaggregation. J. Am. Chem. Soc. 1992, 114, 403–411. [Google Scholar] [CrossRef]
- Clegg, W.; O’Neil, P.A.; Henderson, K.W.; Mulvey, R.E. Structure of Monomeric [TiCl4(hexamethylphosphoric triamide)2]. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1993, 49, 2108–2109. [Google Scholar] [CrossRef]
- Reich, H.J.; Borst, J.P. Direct NMR spectroscopic determination of organolithium ion pair structures in THF/HMPA solution. J. Am. Chem. Soc. 1991, 113, 1835–1837. [Google Scholar] [CrossRef]
- Takahashi, T.; Swanson, D.R.; Negishi, E. Zirconacyclopropanes and Zirconacyclopropenes. Their Synthesis, Characterization, and Reactions. Chem. Lett. 1987, 16, 623–626. [Google Scholar] [CrossRef]
- Takahashi, T.; Murakami, M.; Kunishige, M.; Saburi, M.; Uchida, Y.; Kozawa, K.; Uchida, T.; Swanson, D.R.; Negishi, E.I. Zirconocene-Alkene Complexes. An X-ray Structure and a Novel Preparative Method. Chem. Lett. 1989, 18, 761–764. [Google Scholar] [CrossRef]
- Freidlina, R.K.; Brainina, E.M.; Nesmeyanov, A.N. The Synthesis of Mixed Pincerlike Cyclopentadienyl Compounds of Zirconium. Dokl. Acad. Nauk SSSR 1961, 138, 1369–1372. Available online: http://mi.mathnet.ru/dan25187 (accessed on 10 May 2022).
- Koch, T.; Blaurock, S.; Somoza, F.B.; Voigt, A.; Kirmse, R.; Hey-Hawkins, E. Unexpected P−Si or P−C Bond Cleavage in the Reaction of Li2[(C5Me4)SiMe2PR] (R = Cyclohexyl, 2,4,6-Me3C6H2) and Li[(C5H4)CMe2PHR] (R = Ph, tBu) with ZrCl4 or [TiCl3(thf)3]: Formation and Molecular Structure of the ansa-Metallocenes [{(η-C5Me4)2SiMe2}ZrCl2] and [{(η-C5H4)2CMe2}MCl2] (M = Ti, Zr). Organometallics 2000, 19, 2556–2563. [Google Scholar] [CrossRef]
- Bajgur, C.S.; Tikkanen, W.; Petersen, J.L. Synthesis, structural characterization, and electrochemistry of [1]metallocenophane complexes, [Si(alkyl)2(C5H4)2]MCl2, M = Ti, Zr. Inorg. Chem. 1985, 24, 2539–2546. [Google Scholar] [CrossRef]
- Thiele, K.H.; Schliessburg, C.; Baumeister, K.; Hassler, K. Tetramethyldisilan-1,2-diyl-verbrückte Dicyclopentadienyl-und Diindenylmetalldichloride der 4. Gruppe—Kristallstruktur von C5H4-Si(CH3)2-Si(CH3)2-C5H4ZrCl2. Z. Anorg. Allg. Chem. 1996, 622, 1806–1810. [Google Scholar] [CrossRef]
- Nifant’ev, I.E.; Vinogradov, A.A.; Vinogradov, A.A.; Churakov, A.V.; Ivchenko, P.V. Synthesis of zirconium(III) complex by reduction of O[SiMe2(η5-C5H4)]2ZrCl2 and its selectivity in catalytic dimerization of hex-1-ene. Mendeleev Commun. 2018, 28, 467–469. [Google Scholar] [CrossRef]
- Nifant’ev, I.; Ivchenko, P. Fair Look at Coordination Oligomerization of Higher α-Olefins. Polymers 2020, 12, 1082. [Google Scholar] [CrossRef]
- Resconi, L.; P’emontezi, F.; Nifant’ev, I.E.; Ivchenko, P.V. Metallocenes, Method of Their Preparation, Polymerization Catalyst, Method of Polymerization of Olefins, Homopolymers and Propylene Copolymer. RU Patent 2177948 C2, 10 January 2002. [Google Scholar]
- Nifant’ev, I.E.; Ivchenko, P.V. Synthesis of Zirconium and Hafnium ansa-Metallocenes via Transmetalation of Dielement-Substituted Bis(cyclopentadienyl) and Bis(indenyl) Ligands. Organometallics 1997, 16, 713–715. [Google Scholar] [CrossRef]
- Nifant’ev, I.E.; Laishevtsev, I.; Ivchenko, P.V.; Kashulin, I.A.; Guidotti, S.; Piemontesi, F.; Camurati, I.; Resconi, L.; Klusener, P.A.A.; Rijsemus, J.J.H.; et al. C1-Symmetric Heterocyclic Zirconocenes as Catalysts for Propylene Polymerization, 1. Macromol. Chem. Phys. 2004, 205, 2275–2291. [Google Scholar] [CrossRef]
- Resconi, L.; Guidotti, S.; Camurati, I.; Frabetti, R.; Focante, F.; Nifant’ev, I.E.; Laishevtsev, I.P. C1-Symmetric Heterocyclic Zirconocenes as Catalysts for Propylene Polymerization, 2. Macromol. Chem. Phys. 2005, 206, 1405–1438. [Google Scholar] [CrossRef]
- Spaleck, W.; Kuber, F.; Winter, A.; Rohrmann, J.; Bachmann, B.; Antberg, M.; Dolle, V.; Paulus, E.F. The Influence of Aromatic Substituents on the Polymerization Behavior of Bridged Zirconocene Catalysts. Organometallics 1994, 13, 954–963. [Google Scholar] [CrossRef]
- Stehling, U.; Diebold, J.; Kirsten, R.; Roll, W.; Brintzinger, H.-H. ansa-Zirconocene Polymerization Catalysts with Anelated Ring Ligands—Effects on Catalytic Activity and Polymer Chain Length. Organometallics 1994, 13, 964–970. [Google Scholar] [CrossRef]
- Nifant’ev, I.E.; Ivchenko, P.V.; Bagrov, V.V.; Churakov, A.V.; Chevalier, R. Novel Effective Racemoselective Method for the Synthesis of ansa-Zirconocenes and Its Use for the Preparation of C2-Symmetric Complexes Based on 2-Methyl-4-aryltetrahydro(s)indacene as Catalysts for Isotactic Propylene Polymerization and Ethylene-Propylene Copolymerization. Organometallics 2012, 31, 4340–4348. [Google Scholar] [CrossRef]
- Nifant’ev, I.E.; Ivchenko, P.V.; Bagrov, V.V.; Churakov, A.V.; Mercandelli, P. 5-Methoxy-Substituted Zirconium Bis-indenyl ansa-Complexes: Synthesis, Structure, and Catalytic Activity in the Polymerization and Copolymerization of Alkenes. Organometallics 2012, 31, 4962–4970. [Google Scholar] [CrossRef]
- Herrmann, W.A.; Rohrmann, J.; Herdtweck, E.; Spaleck, W.; Winter, A. The First Example of an Ethylene-Selective Soluble Ziegler Catalyst of the Zirconocene Class. Angew. Chem. Int. Ed. Engl. 1989, 28, 1511–1512. [Google Scholar] [CrossRef]
- Luttikhedde, H.J.G.; Leino, R.P.; Nasman, J.H.; Ahlgren, M.; Pakkanen, T. Racemic Dichloro{(R,R)-3,3′-(dimethylsilanediyl)bis[(1,2,3,3a,7a-η)-4,5,6,7-tetrahydro-1-indenyl]}zirconium. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1995, 51, 1488–1490. [Google Scholar] [CrossRef]
Entry | [Zr] | HMPA/PPh3 | Alkene Conversion, % | Product Yield, % | |||
---|---|---|---|---|---|---|---|
7 | 8 | 9 | 10 | ||||
1 | 1a | - | 98 | 58 | 8 | 23 | 6 |
2 | 1a | HMPA (0.6 eq) a | 97 | 46 | 24 | 14 | 13 |
3 | 1a | HMPA a | 99 | 44 | 23 | 20 | 12 |
4 | 1a | HMPA (2 eq) a | 99 | 49 | 23 | 17 | 10 |
5 | 1a | PPh3 | 63 | 29 | 9 | 15 | 10 |
6 | 1a | PPh3 (3 eq) | 61 | 23 | 9 | 26 | 5 |
7 | 1b | HMPA | <1 | - | - | - | - |
8 | 1c | HMPA | 82 | 24 | 15 | 16 | 25 |
9 | 1d | HMPA | 63 | 25 | 15 | 7 | 15 |
10 | 1e | HMPA | 48 | 22 | 4 | 7 | 12 |
11 | 1f | HMPA | 58 | 22 | 10 | 3 | 6 |
12 | 1g | HMPA | 76 | 27 | 25 | 12 | 8 |
13 | 1h | HMPA | <1 | - | - | - | - |
14 | 1i | HMPA | 83 | 35 | 23 | 14 | 9 |
15 | 1i | HMPA | 70 | 29 | 21 | 2 | 15 |
16 | 1j | HMPA | 82 | 36 | 26 | 11 | 7 |
17 | 1k | HMPA | 96 | 38 | 41 | 4 | 13 |
18 | 1l | HMPA | 98 | 41 | 40 | 5 | 12 |
19 | 1m | HMPA | 87 | 46 | 31 | 6 | 4 |
20 | 1n | - | 70 | 47 | 13 | 5 | 2 |
21 | 1o | HMPA | 6 | 2 | <1 | <1 | <1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovyazin, P.V.; Ivchenko, P.V.; Nifant’ev, I.E.; Parfenova, L.V. Synthesis of Dibenzylbutane and 9,8′-Neo-Lignans via Cyclometalation of Allylbenzene by EtAlCl2 and Mg in the Presence of Zr ansa-Complexes. Chem. Proc. 2022, 8, 60. https://doi.org/10.3390/ecsoc-25-11776
Kovyazin PV, Ivchenko PV, Nifant’ev IE, Parfenova LV. Synthesis of Dibenzylbutane and 9,8′-Neo-Lignans via Cyclometalation of Allylbenzene by EtAlCl2 and Mg in the Presence of Zr ansa-Complexes. Chemistry Proceedings. 2022; 8(1):60. https://doi.org/10.3390/ecsoc-25-11776
Chicago/Turabian StyleKovyazin, Pavel V., Pavel V. Ivchenko, Ilya E. Nifant’ev, and Lyudmila V. Parfenova. 2022. "Synthesis of Dibenzylbutane and 9,8′-Neo-Lignans via Cyclometalation of Allylbenzene by EtAlCl2 and Mg in the Presence of Zr ansa-Complexes" Chemistry Proceedings 8, no. 1: 60. https://doi.org/10.3390/ecsoc-25-11776
APA StyleKovyazin, P. V., Ivchenko, P. V., Nifant’ev, I. E., & Parfenova, L. V. (2022). Synthesis of Dibenzylbutane and 9,8′-Neo-Lignans via Cyclometalation of Allylbenzene by EtAlCl2 and Mg in the Presence of Zr ansa-Complexes. Chemistry Proceedings, 8(1), 60. https://doi.org/10.3390/ecsoc-25-11776