Effect of Cryogenic Treatment on the Phase Transformation Temperatures and Latent Heat of Ni54Ti46 Shape Memory Alloy †
Abstract
:1. Introduction
2. Methods and Materials
3. Results and Discussion
3.1. The Phase Transformation Temperatures
3.2. Evolution of Hysteresis and Latent Heat
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lagoudas, D.C. Shape Memory Alloys: Modeling and Engineering Applications; Springer: New York, NY, USA, 2008. [Google Scholar] [CrossRef]
- Funakubo, H. Shape Memory Alloys; Gordon and Breach Science Publishers: New York, NY, USA, 1987. [Google Scholar]
- Otsuka, K.; Ren, X. Recent developments in the research of shape memory alloys. Intermetallics 1999, 7, 511–528. [Google Scholar] [CrossRef]
- Dong, Y.; Lin, X.; Xiao, H. Deep cryogenic treatment of high-speed steel and its mechanism. Heat Treat. Met. 1998, 3, 55–59. [Google Scholar]
- Mariante, G.R. Efeito do Tratamento Criogênico nas propriedades mecânicas do aço rápido AISI M2. Master’s Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 1999. [Google Scholar]
- Molinari, A.; Pellizzari, M.; Gialanella, S.; Straffelini, G.; Stiasny, K. Effect of deep cryogenic treatment on the mechanical properties of tool steels. J. Mater. Process. Technol. 2001, 118, 350–355. [Google Scholar] [CrossRef]
- Priyadarshini, M.; Biswas, C.K. Cryo-treatment of NiTi alloys. In Nickel-Titanium Smart Hybrid Materials, 1st ed.; Thomas, S., Behera, A., Nguyen, T.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 57–68. [Google Scholar]
- Singh, A.; Chandak, M.G.; Saxena, A. Effect of cryogenic treatment on nickel-titanium endodontic instruments. Int. J. Dent. Clin. 2013, 5, 4–7. [Google Scholar]
- Kim, J.W.; Griggs, J.A.; Regan, J.D.; Ellis, R.A.; Cai, Z. Effect of cryogenic treatment on nickel-titanium endodontic instruments. Int. Endod. J. 2005, 38, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Vinothkumar, T.S.; Kandaswamy, D.; Prabhakaran, G.; Rajadurai, A. Microstructure of cryogenically treated martensitic shape memory nickel-titanium alloy. J. Conserv. Dent. 2015, 18, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, T.C.; Barcelos, A.P.; Silva, E.P. Influence of thermal cycling on the phase transformation temperatures and latent heat of a NiTi shape memory alloy. In Proceedings of the International Conference on Shape Memory and Superelastic Technologies, San Diego, CA, USA, 15–19 May 2017. [Google Scholar]
- Otsuka, K.; Ren, X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 2005, 50, 511–678. [Google Scholar] [CrossRef]
- Geroldo, A.C. Estudo do efeito de memória de forma de fios ortodônticos da liga Ni-Ti nas condições comercial e após tratamentos térmicos. Master’s Thesis, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil, April 2009. [Google Scholar]
- Vinothkumar, T.S.; Kandaswamy, D.; Prabhakaran, G.; Rajadurai, A. Mechanical behavior of deep cryogenically treated martensitic shape memory nickel–titanium rotary endodontic instruments. Eur. J. Dent. 2016, 10, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Castilho, W.S. Contribuição à Influência de Tratamento Criogênico em Propriedades Térmicas e Mecânicas das Ligas NiTi Austenítica e Martensítica com Memória de Forma. Master’s Thesis, PPMEC-Universidade de Brasília, Brasília, Brazil, 2017. [Google Scholar]
- Guimarães, J.R.C.; Rios, P.R. Martensite start temperature and the austenite grain-size. J. Mater. Sci. 2010, 45, 1074–1077. [Google Scholar] [CrossRef]
- Fumagalli, L.; Buterra, F.; Coda, A. SmartFlex® NiTi wires for shape memory actuators. J. Mater. Eng. Perform. 2009, 18, 691–695. [Google Scholar] [CrossRef]
- Saburi, T. Ti-Ni Shape Memory Alloys. In Shape Memory Materials, 1st ed.; Otsuka, K., Wayman, C.M., Eds.; Cambridge University Press: Cambridge, UK, 1998; p. 289. [Google Scholar]
- Van der Wijst, M.W.M. Shape Memory Alloys Featuring Nitinol; DCT rapporten; Technische Universiteit Eindhoven: Eindhoven, The Netherlands, 1992; Volume 1992.085. [Google Scholar]
- Asgarinia, F.; Hashemi, S.M.; Parvizi, F. Heat-treatment of NiTi alloys. In Nickel-Titanium Smart Hybrid Materials, 1st ed.; Thomas, S., Behera, A., Nguyen, T.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 69–78. [Google Scholar]
- Cruz, B.F. Avaliação do efeito de Tratamento Criogênico em Propriedades Mecânicas e Térmicas da Liga Ni48Ti52. Master’s Thesis, Universidade de Brasília, Brasília, Brazil, 2016. [Google Scholar]
- Gontijo, M.; da Silva, E.P.; de Castro, M.C.S.; dos Santos, C.T.; da Silva, T.C. Influence of Deep Cryogenic Treatment on the Pseudoelastic Behavior of the Ni57Ti43 Alloy. Shape Mem. Superelast. 2022, 8, 215–225. [Google Scholar] [CrossRef]
- Fukami-ushiro, K.L.; Dunand, D.C. NiTi and NiTi-TiC composites: Part III. Shape-memory recovery. Metall. Mater. Trans. A 1996, 27, 193–203. [Google Scholar] [CrossRef]
Product | Diameter [µm] | Max. Force [N] | Max. Deformation | Suggested Force [N] | Suggested Deformation |
---|---|---|---|---|---|
SmartFlex150 | 150 | 6.2 | 5.5% | 2.7 | <3.5% |
Hysteresis test: 200 MPa, 1 °C/minute | |||||
Recoverable deformation | 4.8% | ||||
As | 86 °C | ||||
Af | 94 °C | ||||
Ms | 65 °C | ||||
Mf | 57 °C | ||||
Fadiga: 3.5% 170 MPa 0.6 A | |||||
Cycle numbers | >105 | ||||
Variance | 0.17% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Andrade, R.A.M.; de Castro, M.C.S.; Reinke, G.; dos Santos, C.T.; da Silva, T.C. Effect of Cryogenic Treatment on the Phase Transformation Temperatures and Latent Heat of Ni54Ti46 Shape Memory Alloy. Mater. Proc. 2022, 11, 2. https://doi.org/10.3390/materproc2022011002
de Andrade RAM, de Castro MCS, Reinke G, dos Santos CT, da Silva TC. Effect of Cryogenic Treatment on the Phase Transformation Temperatures and Latent Heat of Ni54Ti46 Shape Memory Alloy. Materials Proceedings. 2022; 11(1):2. https://doi.org/10.3390/materproc2022011002
Chicago/Turabian Stylede Andrade, Rodrigo A. Martins, Maria Clara S. de Castro, Gustavo Reinke, Cláudio T. dos Santos, and Tadeu C. da Silva. 2022. "Effect of Cryogenic Treatment on the Phase Transformation Temperatures and Latent Heat of Ni54Ti46 Shape Memory Alloy" Materials Proceedings 11, no. 1: 2. https://doi.org/10.3390/materproc2022011002
APA Stylede Andrade, R. A. M., de Castro, M. C. S., Reinke, G., dos Santos, C. T., & da Silva, T. C. (2022). Effect of Cryogenic Treatment on the Phase Transformation Temperatures and Latent Heat of Ni54Ti46 Shape Memory Alloy. Materials Proceedings, 11(1), 2. https://doi.org/10.3390/materproc2022011002