Numerical Modelling of Structural Behaviour of Curved Insulating Glass Units †
Abstract
:1. Introduction
2. Research Methodology
2.1. Experiments
2.2. Development of the Numerical Model of the Curved IGU
2.3. Case Study
3. Results
3.1. Validation of the Curved IGU Model by Physical Experiments
3.2. Validation of the Reference (Flat) IGU Model with Alternative Software
3.3. Results of the Case Study
4. Conclusions and Further Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kosić, T.; Svetelć, I.; Cekić, Z. Complexity of Curved Glass Structures. IOP Conf. Ser. Mater. Sci. Eng. 2017, 262, 012158. [Google Scholar] [CrossRef]
- Malewski, A.; Kozłowski, M.; Sumelka, W.; Połedniok, M. Large Scale Architectural Glass Slumping Process-Challenges and Limitations. Arch. Civ. Eng. 2020, 66, 485–505. [Google Scholar] [CrossRef]
- Kocer, C.; Aronen, A.; Collins, R.; Asano, O.; Ogiso, Y. Measurement of heat flow through vacuum insulating glass part 2: Measurement area separated from glass sheets with buffer plates. Glass Struct. Eng. 2022. [Google Scholar] [CrossRef]
- Nizich, A.; Baer, S.; Prandelli, S.; Burkhart, I.K.; Moore, W.P. Enhancing the Light-Curved Insulated Glass Unit Design Study Keywords; GPD Glass Performance Days: Tampere, Finland, 2019. [Google Scholar]
- Bao, M.; Gregson, S. Sensitivity study on climate induced internal pressure within cylindrical curved IGUs. Glass Struct. Eng. 2019, 4, 29–44. [Google Scholar] [CrossRef]
- DIN 18008-1; Glass in Building—Design and Construction Rules—Part 1: Terms and General Bases. Deutsches Institut fur Normung E.V. (DIN): Berlin, Germany, 2010.
- Kozłowski, M.; Respondek, Z.; Wiśniowski, M.; Cornik, D.; Zemła, K. Experimental and Numerical Simulations of Climatic Loads in Insulating Glass Units by Controlled Change of Pressure in the Gap. Appl. Sci. 2023, 13, 1269. [Google Scholar] [CrossRef]
- Kozłowski, M.; Respondek, Z.; Cornik, D.; Wiśniowski, M.; Zemła, K. Influence of Curvature and Geometrical Parameters on Internal Pressure in Cylindrical Insulating Glass Units. Thin-Walled Struct. 2023; in review. [Google Scholar]
- SIMULIA. Abaqus/CAE User’s Guide; SIMULIA: Johnston, RI, USA, 2014. [Google Scholar]
- Jensen, W. The Universal Gas Constant R. J. Chem. Educ. 2003, 60, 7. [Google Scholar] [CrossRef]
- Rajput, R.K. Engineering Thermodynamics: A Computer Approach; Transatlantic Publishers: London, UK, 2003. [Google Scholar]
- EN 572-1:2012; Glass in Building Basic Soda Lime Silicate Glass Products—Definitions and General Physical and Mechanical Properties. CEN: Brussels, Belgium, 2012.
- Minasyan, M. Randverbundbeanspruchung Gebogener Zweischeiben-Isoliergläser mit Silikonschaum-Abstandhalter; Hamburg University: Hamburg, Germany, 2014. [Google Scholar]
- SJ Software GmbH. SJ MEPLA Software and User’s Manual; SJ Software GmbH: Aachen, Germany, 2021. [Google Scholar]
Load Case | Temperature Difference [K] | Change in Atmospheric Pressure [kN/m2] |
---|---|---|
‘Summer’ | +20 | −2.0 |
‘Winter’ | −25 | +4.0 |
Loading (Air Injection/Withdrawal to/from IGU Cavity) | Internal Pressure [Pa] | Difference (Simulated vs. Measured) | |
---|---|---|---|
Measured Experimentally | Simulated Numerically | ||
+75 mL | 528.6 | 482.5 | −8.7% |
+150 mL | 1066.8 | 960.1 | −10.0% |
+225 mL | 1582.4 | 1435.7 | −9.3% |
+300 mL | 2092.7 | 1906.7 | −8.9% |
−75 mL | −543.1 | −484.4 | −10.8% |
−150 mL | −1064.3 | −970.4 | −8.8% |
−225 mL | −1556.3 | −1464.0 | −5.9% |
−300 mL | −2097.2 | −1594.5 | −6.8% |
Load Case | Flat IGU | Curved IGU | Difference | |
---|---|---|---|---|
‘Summer’ | Internal pressure [Pa] | 1190 | 5680 | +477% |
Maximum principal tensile stress [MPa] | 7.63 | 41.21 | +540% | |
Deflection in the Y direction [mm] | 1.35 | 6.79 | +503% | |
‘Winter’ | Internal pressure [Pa] | −2870 | −6250 | +218% |
Maximum principal tensile stress [MPa] | 8.89 | 51.46 | +579% | |
Deflection in the Y direction [mm] | 1.75 | 7.86 | +449% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozłowski, M.; Zemła, K. Numerical Modelling of Structural Behaviour of Curved Insulating Glass Units. Mater. Proc. 2023, 13, 12. https://doi.org/10.3390/materproc2023013012
Kozłowski M, Zemła K. Numerical Modelling of Structural Behaviour of Curved Insulating Glass Units. Materials Proceedings. 2023; 13(1):12. https://doi.org/10.3390/materproc2023013012
Chicago/Turabian StyleKozłowski, Marcin, and Kinga Zemła. 2023. "Numerical Modelling of Structural Behaviour of Curved Insulating Glass Units" Materials Proceedings 13, no. 1: 12. https://doi.org/10.3390/materproc2023013012
APA StyleKozłowski, M., & Zemła, K. (2023). Numerical Modelling of Structural Behaviour of Curved Insulating Glass Units. Materials Proceedings, 13(1), 12. https://doi.org/10.3390/materproc2023013012