Synthesis of g-C3N4/WO3 Composites under Hydrothermal Conditions and Study of Their Photocatalytic Properties †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of g-C3N4
2.2. Synthesis of g-C3N4/WO3
2.3. Material Characterization
3. Results and Discussion
3.1. Characterization of g-C3N4
3.2. Characterization of g-C3N4/WO3
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katsumata, K.; Motoyoshi, R.; Matsushita, N.; Okada, K. Preparation of graphitic carbon nitride (g-C3N4)/WO3 composites and enhanced visible-light-driven photodegradation of acetaldehyde gas. J. Hazard. Mater. 2013, 260, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Rokicka-Konieczna, P.; Markowska-Szczupak, A.; Kusiak-Nejman, E.; Morawski, A.W. Photocatalytic water disinfection under the artificial solar light by fructose-modified TiO2. Chem. Eng. J. 2019, 372, 203–215. [Google Scholar] [CrossRef]
- Ng, B.; Putri, L.K.; Kong, X.Y.; Teh, Y.W.; Pasbakhsh, P.; Chai, S. Z-Scheme photocatalytic systems for solar water splitting. Adv. Sci. 2020, 7, 1903171. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Long, Y.; Ruan, S.; Zeng, Y.J. Enhanced Photocatalytic CO2 Reduction in Defect-Engineered Z-Scheme WO3−x/g-C3N4 Heterostructures. ACS Omega 2019, 4, 15593–15599. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Zhang, M.; Yin, H.; Luo, Y.; Liu, X. Improved photocatalytic activity of WO3/C3N4: By constructing an anchoring morphology with a Z-scheme band structure. Solid State Sci. 2019, 95, 105926. [Google Scholar] [CrossRef]
- Gao, G.; Jiao, Y.; Waclawik, E.R.; Du, A. Single Atom (Pd/Pt) Supported on Graphitic Carbon Nitride as an Efficient Photocatalyst for Visible-Light Reduction of Carbon Dioxide. J. Am. Chem. Soc. 2016, 138, 6292–6297. [Google Scholar] [CrossRef] [PubMed]
- Reli, M.; Huo, P.; Šihor, M.; Ambrožová, N.; Troppová, I.; Mat, L.; Lang, J.; Svoboda, L.; Ku, P.; Ritz, M.; et al. Novel TiO2/C3N4 Photocatalysts for Photocatalytic Reduction of CO2 and for Photocatalytic Decomposition of N2O. J. Phys. Chem. A 2016, 120, 8564–8573. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B Environ. 2019, 243, 556–565. [Google Scholar] [CrossRef]
- Cui, L.; Ding, X.; Wang, Y.; Shi, H.; Huang, L.; Kang, S. Facile Preparation of Z-scheme WO3/g-C3N4 Composite Photocatalyst with Enhanced Photocatalytic Performance under Visible Light. Appl. Surf. Sci. 2016, 391, 202–210. [Google Scholar] [CrossRef]
- Yang, M.; Hu, S.; Li, F.; Fan, Z.; Wang, F.; Liu, D.; Gui, J. The influence of preparation method on the photocatalytic performance of g-C3N4/WO3 composite photocatalyst. Ceram. Int. 2014, 40, 11963–11969. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Meng, J.; Liu, Y.; Ren, M.; Guo, Y.; Yang, Y. Robust Z-scheme g-C3N4/WO3 heterojunction photocatalysts with morphology control of WO3 for efficient degradation of phenolic pollutants. Sep. Purif. Technol. 2021, 255, 117693. [Google Scholar] [CrossRef]
Sample Name | g-C3N4 Content, wt. % | Tungsten Oxide Content, wt. % | H2O2 Formation Rate, M/min |
---|---|---|---|
g-C3N4/WO3 (0%) | 100 | 0 | 2.0 × 10−4 |
g-C3N4/WO3 (12.5%) | 92 | 8 (γ-WO3) | 6.8 × 10−4 |
g-C3N4/WO3 (25%) | 80 | 20 (γ-WO3 and WO3·0.33H2O) | 5.7 × 10−4 |
g-C3N4/WO3 (50%) | 47 | 53 (h-WO3) | 1.9 × 10−4 |
g-C3N4/WO3 (100%) | 0 | 100 (h-WO3) | 2.0 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medvedeva, E.D.; Kozlov, D.A.; Revenko, A.O.; Garshev, A.V. Synthesis of g-C3N4/WO3 Composites under Hydrothermal Conditions and Study of Their Photocatalytic Properties. Mater. Proc. 2023, 14, 17. https://doi.org/10.3390/IOCN2023-14536
Medvedeva ED, Kozlov DA, Revenko AO, Garshev AV. Synthesis of g-C3N4/WO3 Composites under Hydrothermal Conditions and Study of Their Photocatalytic Properties. Materials Proceedings. 2023; 14(1):17. https://doi.org/10.3390/IOCN2023-14536
Chicago/Turabian StyleMedvedeva, Ekaterina D., Daniil A. Kozlov, Alexander O. Revenko, and Alexey V. Garshev. 2023. "Synthesis of g-C3N4/WO3 Composites under Hydrothermal Conditions and Study of Their Photocatalytic Properties" Materials Proceedings 14, no. 1: 17. https://doi.org/10.3390/IOCN2023-14536
APA StyleMedvedeva, E. D., Kozlov, D. A., Revenko, A. O., & Garshev, A. V. (2023). Synthesis of g-C3N4/WO3 Composites under Hydrothermal Conditions and Study of Their Photocatalytic Properties. Materials Proceedings, 14(1), 17. https://doi.org/10.3390/IOCN2023-14536