Eco-Friendly Composites—Environmental Assessment of Mine Tailings-Based Geopolymers †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Korniejenko, K.; Kozub, B.; Bąk, A.; Balamurugan, P.; Uthayakumar, M.; Furtos, G. Tackling the Circular Economy Challenges—Composites Recycling: Used Tyres, Wind Turbine Blades, and Solar Panels. J. Compos. Sci. 2021, 5, 243. [Google Scholar] [CrossRef]
- Avilés-Palacios, C.; Rodríguez-Olalla, A. The Sustainability of Waste Management Models in Circular Economies. Sustainability 2021, 13, 7105. [Google Scholar] [CrossRef]
- Dvorkin, L.; Marchuk, V.; Hager, I.; Maroszek, M. Design of Cement–Slag Concrete Composition for 3D Printing. Energies 2022, 15, 4610. [Google Scholar] [CrossRef]
- Dvorkin, L.; Duży, P.; Brudny, K.; Choińska, M.; Korniejenko, K. Adhesive Strength of Modified Cement—Ash Mortars. Energies 2022, 15, 4229. [Google Scholar] [CrossRef]
- Figiela, B.; Brudny, K.; Lin, W.-T.; Korniejenko, K. Investigation of Mechanical Properties and Microstructure of Construction- and Demolition-Waste-Based Geopolymers. J. Compos. Sci. 2022, 6, 191. [Google Scholar] [CrossRef]
- Katarzyna, B.; Le, C.H.; Louda, P.; Michał, S.; Bakalova, T.; Tadeusz, P.; Prałat, K. The Fabrication of Geopolymer Foam Composites Incorporating Coke Dust Waste. Processes 2020, 8, 1052. [Google Scholar] [CrossRef]
- Kanagaraj, B.; Anand, N.; Alengaram, U.J.; Raj, R.S. Engineering properties, sustainability performance and life cycle assessment of high strength self-compacting geopolymer concrete composites. Constr. Build. Mater. 2023, 388, 131613. [Google Scholar] [CrossRef]
- Ouellet-Plamondon, C.; Habert, G. 25—Life cycle assessment (LCA) of alkali-activated cements and concretes. In Handbook of Alkali-Activated Cements, Mortars and Concretes; Pacheco-Torgal, F., Labrincha, J.A., Leonelli, C., Palomo, A., Chindaprasirt, P., Eds.; Woodhead Publishing: Cambridge, UK, 2015; Volume 54, pp. 663–686. [Google Scholar]
- Figiela, B.; Korniejenko, K. The possibility of using waste materials as raw materials for the production of geopolymers. Acta Innov. 2020, 36, 48–56. [Google Scholar] [CrossRef]
- Korniejenko, K.; Figiela, B.; Pławecka, K.; Bulut, A.; Şahin, B.; Azizağaoğlu, G.; Łach, M. Characterization of a Coal Shale from Marcel Mining as Raw Material for Geopolymer Manufacturing. Mater. Proc. 2023, 13, 21. [Google Scholar] [CrossRef]
- Sitarz, M.; Figiela, B.; Łach, M.; Korniejenko, K.; Mróz, K.; Castro-Gomes, J.; Hager, I. Mechanical Response of Geopolymer Foams to Heating—Managing Coal Gangue in Fire-Resistant Materials Technology. Energies 2022, 15, 3363. [Google Scholar] [CrossRef]
- Scopus. Analyze Search Results. Available online: https://www.scopus.com/term/analyzer.uri?sort=plf-f&src=s&sid=08f2c012c4ab456bc3a08cdf859578ce&sot=a&sdt=a&sl=50&s=%28TITLE-ABS-KEY%28geopolymer%29+AND+TITLE-ABS-KEY%28LCA%29%29&origin=resultslist&count=10&analyzeResults=Analyze+results (accessed on 6 June 2023).
- Khan, S.A.; Jassim, M.; Ilcan, H.; Sahin, O.; Bayer, İ.R.; Sahmaran, M.; Koc, M. 3D printing of circular materials: Comparative environmental analysis of materials and construction techniques. Case Stud. Constr. Mater. 2023, 18, e02059. [Google Scholar] [CrossRef]
- Singh, R.P.; Vanapalli, K.R.; Sankar Cheela, V.R.; Peddireddy, S.R.; Sharma, H.B.; Mohanty, B. Fly ash, GGBS, and silica fume based geopolymer concrete with recycled aggregates: Properties and environmental impacts. Constr. Build. Mater. 2023, 378, 131168. [Google Scholar] [CrossRef]
- Alhassan, M.; Alkhawaldeh, A.; Betoush, N.; Alkhawaldeh, M.; Huseien, G.F.; Amaireh, L.; Elrefae, A. Life Cycle Assessment of the Sustainability of Alkali-Activated Binders. Biomimetics 2023, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Mir, N.; Khan, S.A.; Kul, A.; Sahin, O.; Sahmaran, M.; Koc, M. Life cycle assessment of construction and demolition waste-based geopolymers suited for use in 3-dimensional additive manufacturing. Clean. Eng. Technol. 2022, 10, 100553. [Google Scholar] [CrossRef]
- Adelfio, L.; Giallanza, A.; La Scalia, G.; La Fata Concetta, M.; Micale, R. Life cycle assessment of a new industrial process for sustainable construction materials. Ecol. Indic. 2023, 148, 110042. [Google Scholar] [CrossRef]
- Munir, Q.; Abdulkareem, M.; Horttanainen, M.; Kärki, T. A comparative cradle-to-gate life cycle assessment of geopolymer concrete produced from industrial side streams in comparison with traditional concrete. Sci. Total Environ. 2023, 865, 161230. [Google Scholar] [CrossRef] [PubMed]
- Alsalman, A.; Assi, L.N.; Kareem, R.S.; Carter, K.; Ziehl, P. Energy and CO2 emission assessments of alkali-activated concrete and Ordinary Portland Cement concrete: A comparative analysis of different grades of concrete. Clean. Environ. Syst. 2021, 3, 100047. [Google Scholar] [CrossRef]
- Tasiopoulou, T.; Katsourinis, D.; Giannopoulos, D.; Founti, M. Production-Process Simulation and Life-Cycle Assessment of Metakaolin as Supplementary Cementitious Material. Eng 2023, 4, 761–779. [Google Scholar] [CrossRef]
- Chen, J.; Ng, P.L.; Jaskulski, R.; Kubissa, W. Use of Quartz Sand to Produce Low Embodied Energy and Carbon Footprint Plaster. J. Sustain. Archit. Civ. Eng. 2017, 21, 75–81. [Google Scholar] [CrossRef]
- Nowtricity. Poland. Available online: https://www.nowtricity.com/country/poland/ (accessed on 16 June 2023).
Functional Unit | Data Source | Impact Considered | Conclusion | Reference |
---|---|---|---|---|
1 m3 high-strength self-compacting geopolymer concrete composites | The literature and calculations | Energy, greenhouse gas (GHG) emissions, and cost | GHG emissions can be reduced by between 5 and 10%, compared to emissions from Ordinary Portlant Cement (OPC) concreate. | [7] |
1 m3 of construction and demolition waste (CDW)-based GP structure | ISO 14040 and 14044, GaBi software, the literature, and calculations | CO2 footprint | GP-based 3D-printed construction resulted in the lowest global warming potential of 488 [kg CO2 eq] compared to 595.6 [kg CO2 eq] for OPC-based structures and 533.7 [kg CO2 eq] for conventional GP-based structures. | [13] |
1 m3 GP concrete | Ecoinvent, Simapro LCA, and IMPACT 2002+® | Mainly energy | 50–60% reduction in environmental impacts, as compared to OPC concrete | [14] |
1 m3 concrete | The literature and calculations | Energy, GHG emissions, and cost | In greenhouse applications, GP concretes are more efficient than OPC concretes | [15] |
1 m3 GP binder | GaBi software and the literature | Global warming potential, acidification potential, eutrophication potential, ozone layer depletion potential, ecotoxic air | The global warming potential for the geopolymer binder produced is 21% less than that of OPC. The source of electricity plays an important role in this analysis. | [16] |
1 m3 concrete | ELCD, ecoinvent, and the literature | Global warming potential and economic assessment | The LCA showed a lower environmental impact of GP concrete in comparison to traditional concrete. | [17] |
1 m3 concrete | ISO 14040 and 14044, Ecoinvent, GaBi software, the literature, and calculations | CO2 footprint | The pretreatment of industrial waste has a slight environmental impact, but their usage significantly reduces the potential for global warming. | [18] |
1 m3 concrete of 40 MPa and 60 MPa | The literature and calculations | Energy, CO2 footprint | The ingredients of the activating solution have a significant impact on energy and CO2 emissions | [19] |
Material | Energy Consumption [GJ/t] | GHG Emission—CO2 eq [t CO2/t] | Source of Data |
---|---|---|---|
Metakaolin | 2.5 | 0.33 | [19,20] |
Mine tailings | 1.26 | 0.08 | Own calculation 1 |
River sand | 0.00085 | 0.02 | [21] |
Sodium hydroxide | 20.5 | 1.915 | [19] |
Sodium silicate | 5.371 | 1.222 | [19] |
Material | Metakaolin-Based Geopolymer | Mine Tailing-Based Geopolymer |
---|---|---|
Metakaolin | 870 | 0 |
Mine tailings | 0 | 870 |
River sand | 870 | 870 |
Sodium hydroxide | 50 | 50 |
Sodium silicate | 487 | 487 |
Water | 159 | 159 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korniejenko, K.; Figiela, B.; Łach, M.; Kozub, B. Eco-Friendly Composites—Environmental Assessment of Mine Tailings-Based Geopolymers. Mater. Proc. 2023, 15, 94. https://doi.org/10.3390/materproc2023015094
Korniejenko K, Figiela B, Łach M, Kozub B. Eco-Friendly Composites—Environmental Assessment of Mine Tailings-Based Geopolymers. Materials Proceedings. 2023; 15(1):94. https://doi.org/10.3390/materproc2023015094
Chicago/Turabian StyleKorniejenko, Kinga, Beata Figiela, Michał Łach, and Barbara Kozub. 2023. "Eco-Friendly Composites—Environmental Assessment of Mine Tailings-Based Geopolymers" Materials Proceedings 15, no. 1: 94. https://doi.org/10.3390/materproc2023015094
APA StyleKorniejenko, K., Figiela, B., Łach, M., & Kozub, B. (2023). Eco-Friendly Composites—Environmental Assessment of Mine Tailings-Based Geopolymers. Materials Proceedings, 15(1), 94. https://doi.org/10.3390/materproc2023015094