Development and Validation of a Dynamic Model for Flotation Predictive Control Incorporating Froth Physics †
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferreira, J.; Loveday, B. An improved model for simulation of flotation circuits. Miner. Eng. 2000, 13, 1441–1453. [Google Scholar] [CrossRef]
- Quintanilla, P.; Neethling, S.J.; Brito-Parada, P.R. Modelling for froth flotation control: A review. Miner. Eng. 2020, 162, 106718. [Google Scholar] [CrossRef]
- Bergh, L.; Yianatos, J. The long way toward multivariate predictive control of flotation processes. J. Process. Control. 2011, 21, 226–234. [Google Scholar] [CrossRef]
- Camacho, E.F.; Bordons, C. Model Predictive Control; Springer: London, UK, 2007. [Google Scholar] [CrossRef]
- Desbiens, A.; Hodouin, D.; Najim, K.; Flament, F. Long-range predictive control of a rougher flotation unit. Miner. Eng. 1994, 7, 21–37. [Google Scholar] [CrossRef]
- Desbiens, A.; Hodouin, D.; Mailloux, M. Nonlinear Predictive Control of a Rougher Flotation Unit Using Local Models. IFAC Proc. Vol. 1998, 31, 287–292. [Google Scholar] [CrossRef]
- Sbarbaro, D.; del Villar, R. Advanced control and supervision for mineral processing. In Advances in Industrial Control; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Shean, B.; Cilliers, J. A review of froth flotation control. Int. J. Miner. Process. 2011, 100, 57–71. [Google Scholar] [CrossRef]
- Quintanilla, P.; Neethling, S.J.; Navia, D.; Brito-Parada, P.R. A dynamic flotation model for predictive control incorporating froth physics. Part I: Model development. Miner. Eng. 2021, 173, 107192. [Google Scholar] [CrossRef]
- Neethling, S.; Brito-Parada, P. Predicting flotation behaviour—The interaction between froth stability and performance. Miner. Eng. 2018, 120, 60–65. [Google Scholar] [CrossRef]
- Quintanilla, P.; Neethling, S.J.; Navia, D.; Brito-Parada, P.R. A dynamic flotation model for predictive control incorporating froth physics. Part II: Model calibration and validation. Miner. Eng. 2021, 173, 107190. [Google Scholar] [CrossRef]
- Shean, B.; Hadler, K.; Neethling, S.; Cilliers, J. A dynamic model for level prediction in aerated tanks. Miner. Eng. 2018, 125, 140–149. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quintanilla, P.; Neethling, S.J.; Brito-Parada, P.R. Development and Validation of a Dynamic Model for Flotation Predictive Control Incorporating Froth Physics. Mater. Proc. 2021, 5, 13. https://doi.org/10.3390/materproc2021005013
Quintanilla P, Neethling SJ, Brito-Parada PR. Development and Validation of a Dynamic Model for Flotation Predictive Control Incorporating Froth Physics. Materials Proceedings. 2021; 5(1):13. https://doi.org/10.3390/materproc2021005013
Chicago/Turabian StyleQuintanilla, Paulina, Stephen J. Neethling, and Pablo R. Brito-Parada. 2021. "Development and Validation of a Dynamic Model for Flotation Predictive Control Incorporating Froth Physics" Materials Proceedings 5, no. 1: 13. https://doi.org/10.3390/materproc2021005013
APA StyleQuintanilla, P., Neethling, S. J., & Brito-Parada, P. R. (2021). Development and Validation of a Dynamic Model for Flotation Predictive Control Incorporating Froth Physics. Materials Proceedings, 5(1), 13. https://doi.org/10.3390/materproc2021005013