The Dual Paradigm of Mining Waste: “From Ecotoxicological Sources to Potential Polymetallic Resources”—An Example from Iberian Pyrite Belt (Portugal) †
Abstract
:1. Introduction and Motivation for the Study
2. Materials and Methods
2.1. Mining Waste Samples
2.2. XRF and Micro-XRF Analysis
2.3. Leaching Column-Percolation Tests
2.4. Statistical and Image Analysis
2.4.1. Univariate and Multivariate Analyses
2.4.2. Semi-Quantitative RGB Pixel Analysis
2.5. Multi-Criteria Decision Analysis (MCDA) Method
3. Results and Discussion
3.1. Elemental Identification with X-ray Fluorescence Techniques
3.2. Results of MCDA
- Environmental rehabilitation without a remining waste project (A1)
- Environmental rehabilitation with a remining waste project (A2)
4. Conclusions, Final Comments, and Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matos, J.X.; Martins, P.P. Reabilitação ambiental de áreas mineiras do sector português da Faixa Piritosa Ibérica: Estado da arte e perspetivas futuras. Bol. Geol. Y Min. 2006, 117, 289–304. [Google Scholar]
- Carvalho, D.; Goinhas, J.A.C.; Schermerhorn, L.J.G. Principais Jazigos Minerais do Sul de Portugal, Livro-Guia da Excursão n.º 4. I Congresso Hispano-Luso-Americano de Geologia Económica, Lisboa & Madrid; Direcç.-geral de Minas e Serviços Geológicos: Lisboa, Portugal, 1971; pp. 59–64. [Google Scholar]
- Quental, L.; Bourguignon, A.; Sousa, A.J.; Batista, M.J.; Brito, M.G.; Tavares, T.; Abreu, M.M.; Vairinho, M.; Cottard, F. MINEO Southern Europe environment test site: Contamination impact mapping and modelling: Final Report from MINEO Project—Assessing and monitoring the environmental impact of mining in Europe using Advanced Earth Observation Techniques, September 2002. Available online: http://hdl.handle.net/10400.9/3268 (accessed on 10 January 2020).
- Matos, J.X.; Pereira, Z.; Oliveira, V.; Oliveira, J.T. The Geological setting of the São Domingos pyrite orebody, Iberian Pyrite Belt. In Proceedings of the VII National Geology Congress, Estremoz, Portugal, 29 June–13 July 2006; pp. 283–286. [Google Scholar]
- Oliveira, D.P.S. A Visitor ’ s Guide to the São Domingos Mine/Guia de Visita à Mina de São Domingos; LNEG: Lisboa, Portugal, 2018. [Google Scholar]
- Guita, R.J.N.P. A Mina de São Domingos (Mértola, Baixo Alentejo, Portugal): Actividade Industrial Moderna 1854–1966; O Mundo do Trabalho no sul de Portugal: Portimão, Portugal, 2011; pp. 117–132. [Google Scholar]
- Oliveira, J.T.; Matos, J.X. O caminho de ferro da Mina de S. Domingos ao Pomarão: Um percurso geo-educacional na Faixa Piritosa Ibérica. Proceedings of the XXIV Encontro de Prof. de Geociências da Assoc. Portuguesa de Geólogos, Beja, Portugal; 2004, p. 19. Available online: https://www.researchgate.net/profile/Jose-Oliveira-30/publication/289127000_Enter_title/links/5689678208ae1e63f1f8f21f/Enter-title.pdf (accessed on 10 January 2020).
- Mateus, A.; Pinto, A.; Alves, L.C.; Matos, J.X.; Figueiras, J.; Neng, N.R. Roman and modern slag at S. Domingos mine (IPB, Portugal): Compositional features and implications for their long-term stability and potential reuse. Int. J. Environ. Waste Manag. 2011, 8, 133–159. [Google Scholar] [CrossRef]
- Quental, L.; Brito, M.G.; Sousa, A.J.; Abreu, M.M.; Batista, M.J.; Oliveira, V.M.J.; Vairinho, M.; Tavares, T. Utilização de imagens hiperespectrais na avaliação da contaminação mineira em S. Domingos, Faixa Piritosa, Alentejo. In Proceedings of the VI Congresso Nacional de Geologia, Departamento de Ciências da Terra, Monte de Caparica, Portugal, 4–6 June 2003; pp. M33–M36. [Google Scholar]
- Quental, L.; Sousa, A.J.; Marsh, S.; Brito, G.; Abreu, M.M. Remote sensing for waste characterisation. In Field Trip Guidebook Multidisciplinary contribution for environmental characterization and improvement at the S. Domingos mining site. In Proceedings of the 9th International Symposium on Environmental Geochemistry, Aveiro, Portugal, 15–21 July 2012; pp. 18–24. [Google Scholar]
- Álvarez-Valero, A.M.; Pérez-López, R.; Matos, J.; Capitán, M.A.; Nieto, J.M.; Sáez, R.; Delgado, J.; Caraballo, M. Potential environmental impact at São Domingos mining district (Iberian Pyrite Belt, SW Iberian Peninsula): Evidence from a chemical and mineralogical characterization. Environ. Geol. 2008, 55, 1797–1809. [Google Scholar] [CrossRef]
- Matos, J.X.; Pereira, Z.; Batista, M.J.; Oliveira, D. São Domingos Mining Site—Iberian Pyrite Belt. In Proceedings of the 9th International Symposium on Environmental Geochemistry, Aveiro, Portugal, 15–21 July 2012; pp. 7–12. [Google Scholar]
- Batista, M.J.; Matos, J.X.; Figueiredo, M.O.D.; Pereira, T.; Santana, H.; Quental, L. Fingerprints for Mining Products and Wastes of the S. Domingos, Aljustrel and Neves Corvo Mines. In Proceedings of the VIII Congresso Ibérico de Geoquímico/XVII Semana de Geoquímica, Castelo Branco, Portugal, 24–28 September 2011. [Google Scholar]
- Figueiredo, O.M.; Silva, T.; Mirão, J.P. Mineroquímica dos sulfatos de ferro secundários: Uma aproximação ambiental em relação com a mina abandonada de S. Domingos. In Proceedings of the VII Congresso Nacional de Geologia, Estremoz, Portugal, 29 June–13 July 2006. [Google Scholar]
- Batista, M.J.; Batista, M.G.; Brito, M.M.; Abreu, A.J.; Sousa, L.; Quental, L.; Vairinho, M. Avaliação por modelação em SIG da contaminação mineira por drenagem ácida: S.Domingos, Faixa Piritosa, Alentejo. In Proceedings of the VI Congresso Nacional de Geologia, Departamento de Ciências da Terra, Lisbon, Portugal, 4–6 June 2003; CD-ROM. pp. M6–M10. [Google Scholar]
- Quental, L.; Sousa, A.J.; Marsh, S.; Brito, G.; Abreu, M.M. Imaging spectroscopy answers to acid mine drainage detection at S. Domingos, Iberian Pyrite Belt, Portugal. Comun. Geológicas 2011, 98, 61–71. Available online: http://hdl.handle.net/10400.9/1444 (accessed on 10 January 2020).
- Beckhoff, B.; Kanngießer, B.; Langhoff, N.; Wedell, R.; Wolff, H. (Eds.) Handbook of Practical X-ray Fluorescence Analysis; Springer: Berlin/Heidelberg, Germany, 2006; 863p. [Google Scholar] [CrossRef]
- Hall, M. X-ray Fluorescence-Energy Dispersive (ED-XRF) and Wavelength Dispersive (WD-XRF) Spectrometry. In The Oxford Handbook of Archaeological Ceramic Analysis; Hunt, A., Ed.; Oxford University Press: Oxford, UK, 2016. [Google Scholar] [CrossRef]
- Pessanha, S.; Samouco, A.; Adão, R.; Carvalho, M.L.; Santos, J.P. & Amaro, P. Detection limits evaluation of a portable energy dispersive X-ray fluorescence setup using different filter combinations. X-ray Spectrom. 2017, 46, 102–106. [Google Scholar] [CrossRef]
- Pessanha, S.; Carvalho, M.; Carvalho, M.L.; Dias, A. Quantitative analysis of human remains from18th–19th centuries using X-ray fluorescence techniques: The mysterious high content of mercury in hair. J. Trace Elem. Med. Biol. 2016, 33, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, M.K.; Bajpai, S.; Dewangan, U.K.; Tamrakar, R.K. Suitability of leaching test methods for fly ash and slag: A review. J. Radiat. Res. Appl. Sci. 2015, 8, 523–537. [Google Scholar] [CrossRef] [Green Version]
- Meza, S.L.; Kalbe, U.; Berger, W.; Simon, F.-G. Effect of contact time on the release of contaminants from granular waste materials during column leaching experiments. Waste Manag. 2010, 30, 565–571. [Google Scholar] [CrossRef]
- Naka, A.; Yasutaka, T.; Sakanakura, H.; Kalbe, U.; Watanabe, Y.; Inoba, S.; Takeo, M.; Inui, T.; Katsumi, T.; Fujikawa, T.; et al. Column percolation test for contaminated soils: Key factors for standardization. J. Hazard. 2016, 320, 326–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ASTM International Standard. D4874-95 Standard Test Method for Leaching Solid Material in a Column Apparatus (2014, Withdrawn 2021); ASTM International: West Conshohocken, PA, USA, 2014; Available online: http://www.astm.org (accessed on 1 September 2019).
- Hothorn, T.; Everitt, B.S. A Handbook of Statistical Analyses Using R. CRAN.R-project.org Document. 2005. Available online: https://cran.r-project.org/web/packages/HSAUR3 (accessed on 1 September 2016).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: http://www.R-project.org/ (accessed on 1 September 2016).
- Hothorn, T.; Everitt, B.S. A Handbook of Statistical Analyses Using R, 3rd ed.; Chapman & Hall/CRC Press, Taylor & Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2014. [Google Scholar]
- Rahlf, T. Data Visualisation with R—100 Examples; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-319-49751-8. [Google Scholar]
- Hooper, E.S.; Weller, H.; Amelon, S.K. Countcolors. An R package for quantification of the fluorescence emitted by Pseudogymnoascus destructans lesions on the wing membranes of hibernating bats. J. Wildl. Dis. 2020, 56, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Weller, H. Package ‘Countcolors’. 2019. Available online: https://cran.r-project.org/web/packages/countcolors/countcolors.pdf (accessed on 10 January 2020).
- Munier, N.; Hontoria, E.; Jiménez-Sáez, F. Strategic Approach in Multi-Criteria Decision Making; Springer: Cham, The Netherlands, 2019; Volume 275. [Google Scholar]
- Belton, V.; Stewart, T.J. Multiple Criteria Decision Analysis; Springer: Boston, MA, USA, 2002. [Google Scholar]
- Nigim, K.; Munier, N.; Green, J. Pre-feasibility MCDM tools to aid communities in prioritizing local viable renewable energy sources. Renew. Energy 2004, 29, 1775–1791. [Google Scholar] [CrossRef]
- Munier, N. Procedimiento Fundamentado En La Programación Lineal Para La Selección De Alternativas En Proyectos De Naturaleza Compleja Y Con Objetivos Múltiples; Universitat Politècnica de València: Valencia, Spain, 2011; p. 115. [Google Scholar]
- Oliveira, M.L.S.; War, C.R.; Izquierdo, M.; Sampaio, C.H.; de Brum, I.A.; Kautzmann, R.M.; Sabedot, S.; Querol, X.; Silva, L.F.O. Chemical composition and minerals in pyrite ash of an abandoned sulphuric acid production plant. Sci. Total. Environ. 2012, 430, 34–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Topic | Nr | Criteria | A1 | A2 |
---|---|---|---|---|
Population and environmental benefits and risks | C26 * | Geochemical and hydrogeochemical regeneration and recuperation | 3 | 3 |
C1 | Ecological regeneration and reclamation | 3 | 5 | |
C2 | Existence and permanence in time of intermediate environmental impacts | −3 | −5 | |
C25 * | Post-rehabilitation environmental impacts | 3 | 3 | |
C3 | Local population benefits regarding improvement of health hazard levels | 3 | 5 | |
C4 | Local population benefits regarding new occupational potentialities | 3 | 5 | |
C5 | Available area for new purposes (left or generated) | 3 | 5 | |
C6 | Risk due to the presence and environmental dispersion of toxic CRM resources on wastes | −3 | 3 | |
C7 | Dangerous level of new generated waste and by-products | 5 | −3 | |
C8 | Volume of new generated waste | 5 | −5 | |
Land use | C9 | Land planning policy | −3 | 3 |
C10 | Post-mining land use economic potential | 3 | 5 | |
C11 | Potential for private funding | 3 | 5 | |
C27 * | Potential for public funding | 3 | 3 | |
Project costs and economic sustainability | C12 | Project development cost (including I&D) | −3 | −5 |
C13 | Project implementation cost (field work) | −3 | −5 | |
C14 | Risk of reprocessing project failure due to technical and costs constraints (penalties in mine waste processing, commodity price variation, market conditions, outflow of goods) | 3 | −3 | |
C15 | Estimated time for project development (including I&D) and implementation/The time needed to start to enjoy the new PMLU | 3 | −5 | |
C16 | Economic return derived from project implementation at short to medium term/Contribution to support reclamation costs | −5 | 5 | |
C28 * | Economic return derived from project implementation at long term | −3 | −3 | |
C17 | Expectations of economic sustainability at short to medium term | −3 | 3 | |
C18 | Economic sustainability perspective at long term | −5 | −3 | |
C19 | Post-rehabilitation environment control costs | −3 | 3 | |
Geo-ethical issues, geological and mining heritage | C20 | Preservation and valorization of mining archaeological heritage | 5 | −5 |
C29 * | Preservation and valorization of geological heritage | 3 | 3 | |
C21 | Promotion and valorization of education and geological knowledge | 3 | 5 | |
C22 | Promotion and safeguarding mine heritage knowledge for present and future generations | 5 | −5 | |
C30 * | Protection and valorization of geological characteristics of the site | 3 | 3 | |
C31 * | Promotion of geoculture and geotourism | 3 | 3 | |
C23 | Promotion of scenic quality highlighting the landscape quality and its diversity | 5 | −3 | |
C24 | Protection and valorization of natural resources | 3 | 5 |
Value | Description | Signal |
---|---|---|
5 | Very favorable | +++ |
3 | Favorable | ++ |
0 | Indifferent | +- |
−3 | Unfavorable | -- |
−5 | Very unfavorable | --- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa, S.; Dias, A.; Ferraz, A.; Amaro, S.; Brito, M.G.; Almeida, J.A.; Pessanha, S. The Dual Paradigm of Mining Waste: “From Ecotoxicological Sources to Potential Polymetallic Resources”—An Example from Iberian Pyrite Belt (Portugal). Mater. Proc. 2021, 5, 23. https://doi.org/10.3390/materproc2021005023
Barbosa S, Dias A, Ferraz A, Amaro S, Brito MG, Almeida JA, Pessanha S. The Dual Paradigm of Mining Waste: “From Ecotoxicological Sources to Potential Polymetallic Resources”—An Example from Iberian Pyrite Belt (Portugal). Materials Proceedings. 2021; 5(1):23. https://doi.org/10.3390/materproc2021005023
Chicago/Turabian StyleBarbosa, Sofia, António Dias, Ana Ferraz, Sandra Amaro, M. Graça Brito, J. António Almeida, and Sofia Pessanha. 2021. "The Dual Paradigm of Mining Waste: “From Ecotoxicological Sources to Potential Polymetallic Resources”—An Example from Iberian Pyrite Belt (Portugal)" Materials Proceedings 5, no. 1: 23. https://doi.org/10.3390/materproc2021005023
APA StyleBarbosa, S., Dias, A., Ferraz, A., Amaro, S., Brito, M. G., Almeida, J. A., & Pessanha, S. (2021). The Dual Paradigm of Mining Waste: “From Ecotoxicological Sources to Potential Polymetallic Resources”—An Example from Iberian Pyrite Belt (Portugal). Materials Proceedings, 5(1), 23. https://doi.org/10.3390/materproc2021005023