The Future of Scandium Recovery from Wastes †
Abstract
:1. Introduction
2. Background
3. Bauxite Residue
4. Coal Ash
5. Conclusions
- selectivity between major (e.g., Fe, Al, Si) and trace (e.g., Sc, REEs) components;
- achievement of acceptable scandium extraction and recovery;
- silica gel formation;
- fine particle management;
- environmental impact of re-processing;
- generation of dilute leachates with low scandium concentration;
- alkalinity of the residue.
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Dittrich, C.; Yagmurlu, B. SCALE: An Emerging Project for European Scandium Supply. In Proceedings of the ALTA 2018 Uranium-REE-Lithium Conference, Perth, Australia, 24–25 May 2018; p. 7. [Google Scholar]
- Blengini, G.A.; Mathieux, F.; Mancini, L.; Nyberg, M.; Viegas, H.M.; Salminen, J.; Garbarino, E.; Orveillon, G.; Saveyn, H.; Mateos Aquilino, V.; et al. Recovery of Critical and Other Raw Materials from Mining Waste and Landfills: State of Play on Existing Practices; Publications Office of the European Union: Luxembourg, 2019; p. 130. [Google Scholar]
- European Commission. Study on the EU’s List of Critical Raw Materials—Final Report; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- European Commission; Georgitzikis, K.; Torres de Matos, C.; Grohol, M.; Eynard, U.; Wittmer, D.; Mancini, L.; Unguru, M.; Pavel, C.; Carrara, S.; et al. Study on the EU’s List of Critical Raw Materials (2020), Factsheets on Critical Raw Materials; European Commission: Brussels, Belgium, 2020; p. 819. [Google Scholar]
- Gaustad, G.; Williams, E.; Leader, A. Rare Earth Metals from Secondary Sources: Review of Potential Supply from Waste and Byproducts. Resour. Conserv. Recycl. 2021, 167, 105213. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Mineral Commodity Summaries 2021; United States Geological Survey: Reston, VA, USA, 2021; p. 200.
- U.S. Geological Survey. Mineral Commodity Summaries 2017; United States Geological Survey: Reston, VA, USA, 2017; p. 202.
- U.S. Geological Survey. Mineral Commodity Summaries 2015; United States Geological Survey: Reston, VA, USA, 2015; p. 196.
- Gräfe, M.; Power, G.; Klauber, C. Bauxite Residue Issues: III. Alkalinity and Associated Chemistry. Hydrometallurg 2011, 108, 60–79. [Google Scholar] [CrossRef]
- Anawati, J.; Azimi, G. Recovery of Scandium from Canadian Bauxite Residue Utilizing Acid Baking Followed by Water Leaching. Waste Manag. 2019, 95, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Borra, C.R.; Pontikes, Y.; Binnemans, K.; Van Gerven, T. Leaching of Rare Earths from Bauxite Residue (Red Mud). Miner. Eng. 2015, 76, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Gentzmann, M.C.; Schraut, K.; Vogel, C.; Gäbler, H.-E.; Huthwelker, T.; Adam, C. Investigation of Scandium in Bauxite Residues of Different Origin. Appl. Geochem. 2021, 126, 104898. [Google Scholar] [CrossRef]
- Ujaczki, É.; Feigl, V.; Molnár, M.; Cusack, P.; Curtin, T.; Courtney, R.; O’Donoghue, L.; Davris, P.; Hugi, C.; Evangelou, M.W.; et al. Re-Using Bauxite Residues: Benefits beyond (Critical Raw) Material Recovery: Re-Using Bauxite Residues. J. Chem. Technol. Biotechnol. 2018, 93, 2498–2510. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zong, Y.; Li, H.; Zhao, Z. Characterization of Scandium and Gallium in Red Mud with Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) and Electron Probe Micro-Analysis (EPMA). Miner. Eng. 2018, 119, 263–273. [Google Scholar] [CrossRef]
- Rivera, R.M.; Ounoughene, G.; Borra, C.R.; Binnemans, K.; Van Gerven, T. Neutralisation of Bauxite Residue by Carbon Dioxide Prior to Acidic Leaching for Metal Recovery. Miner. Eng. 2017, 112, 92–102. [Google Scholar] [CrossRef]
- Rivera, R.M.; Ulenaers, B.; Ounoughene, G.; Binnemans, K.; Van Gerven, T. Extraction of Rare Earths from Bauxite Residue (Red Mud) by Dry Digestion Followed by Water Leaching. Miner. Eng. 2018, 119, 82–92. [Google Scholar] [CrossRef]
- Davris, P.; Marinos, D.; Balomenos, E.; Panias, D.; Paspaliaris, I. Hydrometallurgical Extraction of Scandium from Bauxite Residue Based on Sulfuric Acid Process. In Proceedings of the 2nd International Bauxite Residue Valorisation and Best Practices Conference, Athens, Greece, 7–10 May 2018; pp. 449–454. [Google Scholar]
- Ochsenkühn-Petropulu, M.; Lyberopulu, T.; Ochsenkühn, K.M.; Parissakis, G. Recovery of Lanthanides and Yttrium from Red Mud by Selective Leaching. Anal. Chim. Acta 1996, 319, 249–254. [Google Scholar] [CrossRef]
- Reid, S.; Tam, J.; Yang, M.; Azimi, G. Technospheric Mining of Rare Earth Elements from Bauxite Residue (Red Mud): Process Optimization, Kinetic Investigation, and Microwave Pretreatment. Sci. Rep. 2017, 7, 15252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borra, C.R.; Mermans, J.; Blanpain, B.; Pontikes, Y.; Binnemans, K.; Van Gerven, T. Selective Recovery of Rare Earths from Bauxite Residue by Combination of Sulfation, Roasting and Leaching. Miner. Eng. 2016, 92, 151–159. [Google Scholar] [CrossRef]
- Bonomi, C.; Giannopoulou, I.; Vind, J.; Panias, D. 1-Ethyl-3-Methylimidazolium Hydrogen Sulphate Ionic Liquid Leaching of Bauxite Residue: Iron, Titanium and Scanduim Recovery. In Proceedings of the 2nd Conference of Bauxite Residue Valorisation and Best Practices, Athens, Greece, 7–10 May 2018; pp. 271–274. [Google Scholar]
- Bonomi, C.; Alexandri, A.; Vind, J.; Panagiotopoulou, A.; Tsakiridis, P.; Panias, D. Scandium and Titanium Recovery from Bauxite Residue by Direct Leaching with a Brønsted Acidic Ionic Liquid. Metals 2018, 8, 834. [Google Scholar] [CrossRef] [Green Version]
- Binnemans, K.; Jones, P.T.; Blanpain, B.; Van Gerven, T.; Pontikes, Y. Towards Zero-Waste Valorisation of Rare-Earth-Containing Industrial Process Residues: A Critical Review. J. Clean. Prod. 2015, 99, 17–38. [Google Scholar] [CrossRef] [Green Version]
- Meng, F.; Li, X.; Shi, L.; Li, Y.; Gao, F.; Wei, Y. Selective Extraction of Scandium from Bauxite Residue Using Ammonium Sulfate Roasting and Leaching Process. Miner. Eng. 2020, 157, 106561. [Google Scholar] [CrossRef]
- Deng, B.; Li, G.; Luo, J.; Ye, Q.; Liu, M.; Peng, Z.; Jiang, T. Enrichment of Sc2O3 and TiO2 from Bauxite Ore Residues. J. Hazard. Mater. 2017, 331, 71–80. [Google Scholar] [CrossRef]
- Li, G.; Ye, Q.; Deng, B.; Luo, J.; Rao, M.; Peng, Z.; Jiang, T. Extraction of Scandium from Scandium-Rich Material Derived from Bauxite Ore Residues. Hydrometallurgy 2018, 176, 62–68. [Google Scholar] [CrossRef]
- Li, G.; Liu, M.; Rao, M.; Jiang, T.; Zhuang, J.; Zhang, Y. Stepwise Extraction of Valuable Components from Red Mud Based on Reductive Roasting with Sodium Salts. J. Hazard. Mater. 2014, 280, 774–780. [Google Scholar] [CrossRef]
- Lei, Q.; He, D.; Zhou, K.; Zhang, X.; Peng, C.; Chen, W. Separation and Recovery of Scandium and Titanium from Red Mud Leaching Liquor through a Neutralization Precipitation-Acid Leaching Approach. J. Rare Earths 2021, 39, 1126–1132. [Google Scholar] [CrossRef]
- Wang, W.; Pranolo, Y.; Cheng, C.Y. Recovery of Scandium from Synthetic Red Mud Leach Solutions by Solvent Extraction with D2EHPA. Sep. Purif. Technol. 2013, 108, 96–102. [Google Scholar] [CrossRef]
- Avdibegović, D.; Regadío, M.; Binnemans, K. Recovery of Scandium(III) from Diluted Aqueous Solutions by a Supported Ionic Liquid Phase (SILP). RSC Adv. 2017, 7, 49664–49674. [Google Scholar] [CrossRef] [Green Version]
- Onghena, B.; Borra, C.R.; Van Gerven, T.; Binnemans, K. Recovery of Scandium from Sulfation-Roasted Leachates of Bauxite Residue by Solvent Extraction with the Ionic Liquid Betainium Bis(Trifluoromethylsulfonyl)Imide. Sep. Purif. Technol. 2017, 176, 208–219. [Google Scholar] [CrossRef]
- Giret, S.; Hu, Y.; Masoumifard, N.; Boulanger, J.-F.; Juère, E.; Kleitz, F.; Larivière, D. Selective Separation and Preconcentration of Scandium with Mesoporous Silica. ACS Appl. Mater. Interfaces 2018, 10, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, K.; Wu, Y.; Lei, Q.; Peng, C.; Chen, W. Separation and Recovery of Iron and Scandium from Acid Leaching Solution of Red Mud Using D201 Resin. J. Rare Earths 2020, 38, 1322–1329. [Google Scholar] [CrossRef]
- Zhou, G.; Li, Q.; Sun, P.; Guan, W.; Zhang, G.; Cao, Z.; Zeng, L. Removal of Impurities from Scandium Chloride Solution Using 732-Type Resin. J. Rare Earths 2018, 36, 311–316. [Google Scholar] [CrossRef]
- Arbuzov, S.; Volostnov, A.V.; Mashen’kin, V.S.; Mezhibor, A.M. Scandium in the Coals of Northern Asia (Siberia, the Russian Far East, Mongolia, and Kazakhstan). Russ. Geol. Geophys. 2014, 55. [Google Scholar] [CrossRef]
- Bielowicz, B. Ash Characteristics and Selected Critical Elements (Ga, Sc, V) in Coal and Ash in Polish Deposits. Resources 2020, 9, 115. [Google Scholar] [CrossRef]
- Taggart, R.K.; Hower, J.C.; Dwyer, G.S.; Hsu-Kim, H. Trends in the Rare Earth Element Content of U.S.-Based Coal Combustion Fly Ashes. Environ. Sci. Technol. 2016, 50, 5919–5926. [Google Scholar] [CrossRef]
- Park, S.; Kim, M.; Lim, Y.; Yu, J.; Chen, S.; Woo, S.W.; Yoon, S.; Bae, S.; Kim, H.S. Characterization of Rare Earth Elements Present in Coal Ash by Sequential Extraction. J. Hazard. Mater. 2021, 402, 123760. [Google Scholar] [CrossRef]
- Liu, P.; Yang, L.; Wang, Q.; Wan, B.; Ma, Q.; Chen, H.; Tang, Y. Speciation Transformation of Rare Earth Elements (REEs) during Heating and Implications for REE Behaviors during Coal Combustion. Int. J. Coal Geol. 2020, 219, 103371. [Google Scholar] [CrossRef]
- Hood, M.; Taggart, R.; Smith, R.; Hsu-Kim, H.; Henke, K.; Graham, U.; Groppo, J.; Unrine, J.; Hower, J. Rare Earth Element Distribution in Fly Ash Derived from the Fire Clay Coal, Kentucky. Coal Combust. Gasif. Prod. 2017, 9, 22–33. [Google Scholar] [CrossRef]
- Gollakota, A.R.K.; Volli, V.; Shu, C.-M. Progressive Utilisation Prospects of Coal Fly Ash: A Review. Sci. Total Environ. 2019, 672, 951–989. [Google Scholar] [CrossRef] [PubMed]
- Tolhurst, L. Commercial Recovery of Metals from Coal Ash. In Proceedings of the 2015 World of Coal Ash (WOCA) Conference, Nashville, TN, USA, 5–7 May 2015. [Google Scholar]
- Honaker, R.Q.; Groppo, J.; Noble, A.; Herbst, J.A.; Luttrell, G.H.; Yoon, R.H. Pilot-Scale Testing of an Integrated Circuit for the Extraction of Rare Earth Minerals and Elements from Coal and Coal Byproducts Using Advance Separation Technologies. In Proceedings of the 2016 NETL Crosscutting Technology Research Review Meeting, Pittsburgh, PA, USA, 18–22 April 2016. [Google Scholar]
- Hower, J.C.; Groppo, J.G.; Joshi, P.; Preda, D.V.; Gamliel, D.P.; Mohler, D.T.; Wiseman, J.D.; Hopps, S.D.; Morgan, T.D.; Beers, T.; et al. Distribution of Lanthanides, Yttrium, and Scandium in the Pilot-Scale Beneficiation of Fly Ashes Derived from Eastern Kentucky Coals. Minerals 2020, 10, 105. [Google Scholar] [CrossRef] [Green Version]
- Lin, R.; Howard, B.H.; Roth, E.A.; Bank, T.L.; Granite, E.J.; Soong, Y. Enrichment of Rare Earth Elements from Coal and Coal By-Products by Physical Separations. Fuel 2017, 200, 506–520. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Hassas, B.V.; Rezaee, M.; Zhou, C.; Pisupati, S.V. Recovery of Rare Earth Elements from Coal Fly Ash through Sequential Chemical Roasting, Water Leaching, and Acid Leaching Processes. J. Clean. Prod. 2021, 284, 124725. [Google Scholar] [CrossRef]
- Stoy, L.; Diaz, V.; Huang, C.-H. Preferential Recovery of Rare-Earth Elements from Coal Fly Ash Using a Recyclable Ionic Liquid. Environ. Sci. Technol. 2021, 55, 9209–9220. [Google Scholar] [CrossRef]
Constituent | Average Content, % |
---|---|
Fe2O3 | 40.9 ± 15.6 |
Al2O3 | 16.3 ± 6.4 |
SiO2 | 9.6 ± 6.7 |
TiO2 | 8.8 ± 4.4 |
CaO | 8.6 ± 9.4 |
Na2O | 4.5 ± 3.3 |
Loss of ignition | 10 ± 2.8 |
Residue Origin | Scandium Content, ppm |
---|---|
Greece | 121 |
Australia | 54 |
Canada | 31 |
China | 158 |
Hungary | 80 |
India | 58 |
Russia | 73–228 |
Jamaica | 98–112 |
Residue Origin | Scandium Content, ppm | ||
---|---|---|---|
Min | Max | Mean | |
Siberian region | 9.8 | 150 | 19.2–43.3 |
Russian Far East region | 10.9 | 60.3 | 15.4–28.9 |
Kazakhstan | 23 | 79.7 | 32.7–46.3 |
Mongolia | 7.3 | 78.4 | 15.6–49.9 |
Iran | 33.1 | 63.9 | 48.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chernoburova, O.; Chagnes, A. The Future of Scandium Recovery from Wastes. Mater. Proc. 2021, 5, 55. https://doi.org/10.3390/materproc2021005055
Chernoburova O, Chagnes A. The Future of Scandium Recovery from Wastes. Materials Proceedings. 2021; 5(1):55. https://doi.org/10.3390/materproc2021005055
Chicago/Turabian StyleChernoburova, Olga, and Alexandre Chagnes. 2021. "The Future of Scandium Recovery from Wastes" Materials Proceedings 5, no. 1: 55. https://doi.org/10.3390/materproc2021005055
APA StyleChernoburova, O., & Chagnes, A. (2021). The Future of Scandium Recovery from Wastes. Materials Proceedings, 5(1), 55. https://doi.org/10.3390/materproc2021005055