Kaoline Mapping Using ASTER Satellite Imagery: The Case Study of Kefalos Peninsula, Kos Island †
Abstract
:1. Introduction
2. Geological Settings
3. Methodology
3.1. Preprocessing Techniques
3.2. Endmember Selection
3.3. Mixture Tuned Matched Filtering (MTMF) Algorithm
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ferrier, G.; White, K.; Griffiths, G.; Bryant, R.; Stefouli, M. The mapping of hydrothermal alteration zones on the island of Lesvos, Greece using an integrated remote sensing dataset. Int. J. Remote Sens. 2002, 23, 341–356. [Google Scholar] [CrossRef]
- Anifadi, A.; Parcharidis, I.; Sykioti, O. Hydrothermal alteration zones detection in Limnos island, through the application of remote sensing. Bull. Geol. Soc. Greece 2016, 50, 1596–1604. [Google Scholar] [CrossRef] [Green Version]
- Abdelnasser, A.; Kumral, M.; Zoheir, B.; Karaman, M.; Weihed, P. REE geochemical characteristics and satellite-based mapping of hydrothermal alteration in Atud gold deposit, Egypt. J. Afr. Earth Sci. 2018, 145, 317–330. [Google Scholar] [CrossRef]
- Govil, H.; Gill, N.; Rajendran, S.; Santosh, M.; Kumar, S. Identification of new base metal mineralisation in Kumaon Himalaya, India, using hyperspectral remote sensing and hydrothermal alteration. Ore Geol. Rev. 2018, 92, 271–283. [Google Scholar] [CrossRef]
- Testa, F.J.; Villanueva, C.; Cooke, D.R.; Zhang, L. Lithological and hydrothermal alteration mapping of epithermal, porphyry and tourmaline breccia districts in the Argentine Andes using ASTER imagery. Remote Sens. 2018, 10, 203. [Google Scholar] [CrossRef] [Green Version]
- Khaleghi, M.; Ranjbar, H.; Abedini, A.; Calagari, A.A. Synergetic use of the Sentinel-2, Aster, and Landsat-8 data for hydrothermal alteration and iron oxide minerals mapping in a mine scale. Acta Geodyn. Geomater. 2020, 17, 311–328. [Google Scholar] [CrossRef]
- Tompolidi, A.M.; Sykioti, O.; Koutroumbas, K.; Parcharidis, I. Spectral unmixing for mapping a hydrothermal field in a volcanic environment applied on ASTER, Landsat-8/OLI, and Sentinel-2 MSI Satellite Multispectral Data: The Nisyros (Greece) case study. Remote Sens. 2020, 12, 4180. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, C.; Qin, H. Detection of hydrothermal alteration zones using ASTER data in Nimu porphyry copper deposit, south Tibet, China. Adv. Space Res. 2020, 65, 1818–1830. [Google Scholar] [CrossRef]
- Altherr, R.; Keller, J.; Kott, K. Der jungtertiäre Monzonit von Kos und sein Kontakthof (Ägäis, Griechenland). Bull. Soc. Géol. Fr. 1976, 18, 403–412. [Google Scholar] [CrossRef]
- Dabalakis, P.; Vougioukalakis, G. The Kefalos Tuff ring (W. Kos): Depositional mechanisms, vent position, and model of the evolution of the eruptive activity. Bull. Geol. Soc. Greece 1993, 28, 259–273. [Google Scholar]
- Allen, S.R.; Cas, R.A. Rhyolitic fallout and pyroclastic density current deposits from a phreatoplinian eruption in the eastern Aegean Sea, Greece. J. Volcanol. Geoth. Res. 1998, 86, 219–251. [Google Scholar] [CrossRef]
- Kalt, A.; Altherr, R.; Ludwig, T. Contact metamorphism in pelitic rocks on the island of Kos (Greece, Eastern Aegean Sea): A test for the Na-in-cordierite thermometer. J. Petrol. 1998, 39, 663–688. [Google Scholar] [CrossRef]
- Allen, S.R. Reconstruction of a major caldera-forming eruption from pyroclastic deposit characteristics: Kos Plateau Tuff, eastern Aegean Sea. J. Volcanol. Geoth. Res. 2001, 105, 141–162. [Google Scholar] [CrossRef]
- Allen, S.R.; Cas, R.A.F. Transport of pyroclastic flows across the sea during the explosive, rhyolitic eruption of the Kos Plateau Tuff, Greece. Bull. Volcanol. 2001, 62, 441–456. [Google Scholar] [CrossRef]
- Altherr, R.; Siebel, W. I-type plutonism in a continental back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece. Contrib. Mineral. Petrol. 2002, 143, 397–415. [Google Scholar] [CrossRef]
- Pe-Piper, G.; Moulton, B. Magma evolution in the Pliocene-Pleistocene succession of Kos, South Aegean arc (Greece). Lithos 2008, 106, 110–124. [Google Scholar] [CrossRef]
- Bachmann, O.; Schoene, B.; Schnyder, C.; Spikings, R. 40Ar/39Arand U/Pb dating of young rhyolites in the Kos-Nisyros volcanic complex, Eastern Aegean Arc (Greece): Age discordance due to excess 40Ar in biotite. Geochem. Geophys. Geosyst. 2010, 11, Q0AA08. [Google Scholar] [CrossRef] [Green Version]
- Piper, D.J.; Pe-Piper, G.; Lefort, D. Precursory activity of the 161 ka Kos Plateau Tuff eruption, Aegean Sea (Greece). Bull. Volcanol. 2010, 72, 657–669. [Google Scholar] [CrossRef]
- Bachmann, O.; Deering, C.D.; Ruprecht, J.S.; Huber, C.; Skopelitis, A.; Schnyder, C. Evolution of silicic magmas in the Kos-Nisyros volcanic center, Greece: A petrological cycle associated with caldera collapse. Contrib. Mineral. Petrol. 2012, 163, 151–166. [Google Scholar] [CrossRef]
- Soder, C.; Altherr, A.; Romer, R.L. Mantle Metasomatism at the Edge of a Retreating Subduction Zone: Late Neogene Lamprophyres from the Island of Kos, Greece. J. Petrol. 2016, 57, 1705–1728. [Google Scholar] [CrossRef] [Green Version]
- Papoulis, D.; Katagas-Tsolis, P. Kaolinization processes in the rhyolitic rocks of Kefalos, Kos Island, Aegean Sea, Greece. Bull. Geol. Soc. Greece 2001, XXX1V/3, 867–874. [Google Scholar] [CrossRef] [Green Version]
- Papoulis, D.; Tsolis-Katagas, P.; Tsikouras, B.; Katagas, C. An FT-Raman, Raman and FTIR study of hydrothermally altered volcanic rocks from Kos Island (Southeastern Aegean, Greece). In The South Aegean Active Volcanic Arc: Present Knowledge and Future Perspectives; Fytikas, M., Vougioukalakis, G.E., Eds.; Elsevier: Amsterdam, The Netherlands; Boston, MA, USA, 2005; pp. 293–304. [Google Scholar] [CrossRef]
- Papoulis, D.; Katagas-Tsolis, P.; Katagas, C. New Find of Zunyite in Advanced Argillic Alteration of. Bull. Geol. Soc. Greece 2004, XXXVI, 474–480. [Google Scholar] [CrossRef] [Green Version]
- Tsolis-Katagas, P.; Papoulis, D. Physical and Chemical Properties of Some Greek Kaolins of Different Environments of Origin. Bull. Geol. Soc. Greece 2004, XXXVI, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Papoulis, D. 29Si and 27AL cpmas nmr qualitative and quantitative analysis of kaolinite and dickite in Kos island kaolins, Greece. Bull. Geol. Soc. Greece 2007, 40, 936. [Google Scholar] [CrossRef] [Green Version]
- Sodoudi, F.; Kind, R.; Hatzfeld, D.; Priestley, K.; Hanka, W.; Wylegalla, K.; Stavrakakis, G.; Vafidis, A.; Harjes, H.P.; Bohnhoff, M. Lithospheric structure of the Aegean obtained from P and S receiver functions. J. Geophys. Res. 2006, 111, B12307. [Google Scholar] [CrossRef]
- Wortel, M.J.R.; Spakman, W. Subduction and slab detachment in the Mediterranean–Carpathian region. Science 2000, 290, 1910–1917. [Google Scholar] [CrossRef]
- Fiedrich, A.M.; Laurent, O.; Heinrich, C.A.; Bachmann, O. Melt and fluid evolution in an upper-crustal magma reservoir, preserved by inclusions in juvenile clasts from the Kos Plateau Tuff, Aegean Arc, Greece. GCA 2020, 280, 237–262. [Google Scholar] [CrossRef]
- Pe-Piper, G.; Piper, D.J.W. The Igneous Rocks of Greece; Gebrüder Borntreager: Berlin, Germany, 2002; p. 573. [Google Scholar]
- Kokkaliari, M.; Iliopoulos, I. Petrology and geochemistry of the plutonite contact aureole, in Kos Island, Greece. In Proceedings of the 7th International Earth Science Colloquium on the Aegean Region, İzmir, Turkey, 7–11 October 2019; pp. 47–53. [Google Scholar]
- Triantaphyllis, M. Geological map of Greece, Western Kos (Kefalos) Sheet, 1:50000; I.G.M.E.: Athens, Greece, 1994. [Google Scholar]
- Allen, S.R.; Stadlbauer, E.; Keller, J. Stratigraphy of the Kos Plateau Tuff: Product of a major Quaternary explosive rhyolitic eruption in the eastern Aegean, Greece. Int. J. Earth Sci. 1999, 88, 132–156. [Google Scholar] [CrossRef]
- Rezaei, A.; Hassani, H.; Moarefvand, P.; Golmohammadi, A. Lithological mapping in Sangan region in Northeast Iran using ASTER satellitedata and image processing methods. Geol. Ecol. Landsc. 2020, 4, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Hunt, G. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 1997, 42, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Di Tommaso, I.; Rubinstein, N. Hydrothermal alteration mapping using ASTER data in the infiernillo porphyry deposit, Argentina. Ore Geol. Rev. 2007, 32, 275–290. [Google Scholar] [CrossRef]
- Cooley, T.; Anderson, G.P.; Felde, G.W.; Hoke, M.L.; Ratkowski, A.J.; Chetwynd, J.H.; Gardner, J.A.; Adler-Golden, S.M.; Matthew, M.W.; Bernstein, L.S.; et al. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. IGARSS 2002, 3, 1414–1418. [Google Scholar]
- Van der Werff, H.; Van der Meer, F. Sentinel–2A MSI and Landsat 8 OLI Provide Data Continuity for Geological Remote Sensing. Remote Sens. 2016, 8, 883. [Google Scholar] [CrossRef] [Green Version]
- Azizi, H.; Tarverdi, M.A.; Akbarpour, A. Extraction of hydrothermal alterations from ASTER SWIR data from east Zanjan, northern Iran. Adv. Space Res. 2010, 46, 99–109. [Google Scholar] [CrossRef]
- Pazand, K.; Sarvestani, J.F.; Ravasan, M.R.S. Hydrothermal Alteration Mapping Using ASTER Data for Reconnaissance Porphyry Copper Mineralization in the Ahar Area, NW Iran. J. Indian Soc. Remote Sens. 2013, 41, 379–389. [Google Scholar] [CrossRef]
- Abubakar, A.J.; Hashim, M.; Pour, A.B. Hydrothermal Alteration Mapping of Mineralogical Imprints Associated with Subtle Geothermal System Using Mixture Tuned Matched Filtering Approach on Aster Vnir and Swir Data. ARPN J. Eng. Appl. Sci. 2018, 13, 1226–1234. [Google Scholar]
- Yousefi, S.J.; Ranjbar, H.; Alirezaei, S.; Dargahi, S. Application of Mixture Tuned Matched Filtering on ASTER Data for Hydrothermal Alteration Mapping Related to Porphyry Cu Deposits in Jabal-Barez Ranges, Kerman Copper Belt, Iran. J. Sci. Islam 2018, 29, 271–280. [Google Scholar]
- Yousefi, S.J.; Ranjbar, H.; Alirezaei, S.; Dargahi, S.; Lentz, D.R. Comparison of hydrothermal alteration patterns associated with porphyry Cu deposits hosted by granitoids and intermediate-mafic volcanic rocks, Kerman Magmatic Arc, Iran: Application of geological, mineralogical and remote sensing data. J. Afr. Earth Sci. 2018, 142, 112–123. [Google Scholar] [CrossRef]
- Xu, B.; Xu, Y.; Wan, B.; Wu, X.; Yi, G. Hydrothermally altered mineral mapping using synthetic application of Sentinel-2A MSI, ASTER and Hyperion data in the Duolong area, TibetanPlateau, China. Ore Geol. Rev. 2018, 101, 384–397. [Google Scholar]
- Fereydooni, H.; Moradzadeh, A.; Pahlavani, P.; Mojeddifar, S. Full unmixing hydrothermal alteration minerals mapping by integration of pattern recognition network and directed matched filtering algorithm. Earth Sci. Inform. 2020, 13, 417–431. [Google Scholar] [CrossRef]
- Clark, R.N.; Swayze, G.A.; Wise, R.; Livo, E.; Hoefen, T.; Kokaly, R.; Sutley, S.J. USGS Digital Spectral Library splib06a; U.S. Geological Survey, Digital Data Series 231; Geological Survey: Denver, CO, USA, 2007. [Google Scholar]
- Zadeh, M.H.; Tangestani, M.H.; Roldan, F.V.; Yusta, I. Mineral Exploration and Alteration Zone Mapping Using Mixture Tuned Matched Filtering Approach on ASTER Data at the Central Part of Dehaj-Sarduiyeh Copper Belt, SE Iran. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 284–289. [Google Scholar] [CrossRef]
- Williams, A.P.; Hunt, E.R. Estimation of Leafy Spurge Cover from Hyperspectral Imagery Using Mixture Tuned Matched Filtering. Remote Sens. Environ. 2002, 82, 446–456. [Google Scholar] [CrossRef]
- Mehr, S.G.; Ahadnejad, V.; Abbaspour, R.A.; Hamzeh, M. Using the mixture-tuned matched filtering method for lithological mapping with Landsat TM5 images. Int. J. Remote Sens. 2013, 34, 8803–8816. [Google Scholar] [CrossRef]
- Green, A.A.; Berman, M.; Switzer, P.; Craig, M.D. A Transformation for Ordering Multispectral Data in Terms of Image Quality with Implications for Noise Removal. IEEE Trans. Geosci. Remote Sens. 1988, 26, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Boardman, J.W. Leveraging the High Dimensionality of AVIRIS Data for Improved Sub-pixel Target Unmixing and Rejection of False Positives: Mixture Tuned Matched Filtering. In Proceedings of the 5th JPL Geoscience Workshop, Pasadena, CA, USA, 12–16 January 1998; pp. 55–56. [Google Scholar]
- Clark, R.N.; King, T.V.V.; Klejwa, M.; Swayze, G.A.; Vergo, N. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res. Solid Earth 1990, 95, 12653–12680. [Google Scholar] [CrossRef] [Green Version]
- Tsirambides, A.; Filippidis, A. Greece seeks mineral lifeboat. IM 2012, 532, 38–45. [Google Scholar]
- Tsirambides, A.; Filippidis, A. Exploration key to growing Greek industry. IM 2012, 533, 44–47. [Google Scholar]
- Bolen, W.P. Perlite: Mineral Industry Surveys, 1990 and 1991; US Bureau of Mines: Socorro, NM, USA, 1996. [Google Scholar]
Spectral Bands | Spectral Bandwidth (μm) | Spatial Resolution (m) | |
---|---|---|---|
VNIR | 1 | 0.52–0.60 | 15 |
2 | 0.63–0.69 | ||
3B | 0.78–0.80 | ||
3N | 0.78–0.86 | ||
SWIR | 4 | 1.650–1.700 | 30 |
5 | 2.145–2.185 | ||
6 | 2.185–2.225 | ||
7 | 2.235–2.285 | ||
8 | 2.295–2.395 | ||
9 | 2.360–2.430 | ||
TIR | 10 | 8.125–8.475 | 90 |
11 | 8.475–8.825 | ||
12 | 8.925–9.275 | ||
13 | 10.25–10.95 | ||
14 | 10.95–11.65 |
Mineral | Number of Pixels Classified | Area in Km2 |
---|---|---|
Kaolinite | 5879 | 1.323 |
Dickite | 762 | 0.171 |
Kaolinite/Smectite | 3640 | 0.819 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokkaliari, M.; Kanellopoulos, C.; Illiopoulos, I. Kaoline Mapping Using ASTER Satellite Imagery: The Case Study of Kefalos Peninsula, Kos Island. Mater. Proc. 2021, 5, 76. https://doi.org/10.3390/materproc2021005076
Kokkaliari M, Kanellopoulos C, Illiopoulos I. Kaoline Mapping Using ASTER Satellite Imagery: The Case Study of Kefalos Peninsula, Kos Island. Materials Proceedings. 2021; 5(1):76. https://doi.org/10.3390/materproc2021005076
Chicago/Turabian StyleKokkaliari, Maria, Christos Kanellopoulos, and Ioannis Illiopoulos. 2021. "Kaoline Mapping Using ASTER Satellite Imagery: The Case Study of Kefalos Peninsula, Kos Island" Materials Proceedings 5, no. 1: 76. https://doi.org/10.3390/materproc2021005076
APA StyleKokkaliari, M., Kanellopoulos, C., & Illiopoulos, I. (2021). Kaoline Mapping Using ASTER Satellite Imagery: The Case Study of Kefalos Peninsula, Kos Island. Materials Proceedings, 5(1), 76. https://doi.org/10.3390/materproc2021005076