Mapping Bauxite Mining Residues Using Remote Sensing Techniques †
Abstract
:1. Introduction
2. Materials and Methods
- Grab sampling, collected during the field visit to the bauxite mine in July 2020 and used as concentration samples to map metals variability in the selected area by X-ray fluorescence (XRF) chemical analysis at Bologna University.
- The spectroradiometer surveys at two time periods: the first was performed in July 2020 to create a spectral library, after data extraction and preparation; the second was accomplished in June 2021 to validate the results and to check the spectral signature of ground control points (GCP).
- GCP measured by GPS during both the field visits, firstly for images geometry corrections and secondly to validate and check the detected features from the results.
2.1. Band Ratio Analysis
2.2. Multivariate Geostatistics
2.3. The Case Study
3. Field Activities
3.1. Spectroradiometer Survey
3.2. Field Sampling
3.3. Field Sampling
4. Results
4.1. Results of the Band Ratio Analysis
4.2. Results of the Multivariate Geostatistical Analysis
4.3. Concentration Mapping
5. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kasmaeeyazdi, S.; Mandanici, E.; Balomenos, E.; Tinti, F.; Bonduà, S.; Bruno, R. Mapping of Aluminum Concentration in Bauxite Mining Residues Using Sentinel-2Imagery. Remote Sens. 2021, 13, 1517. [Google Scholar] [CrossRef]
- Bruno, R.; Kasmaeeyazdi, S.; Tinti, F.; Mandanici, E.; Balomenos, E. Spatial Component Analysis to Improve Mineral Estimation Using Sentinel-2 Band Ratio: Application to a Greek Bauxite Residue. Minerals 2021, 11, 549. [Google Scholar] [CrossRef]
- Sentinel 2 Online Website. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed on 29 July 2021).
- Loizzo, R.; Ananasso, C.; Guarini, R.; Lopinto, E.; Candela, L.; Pisani, A.R. The Prisma Hyperspectral Mission; Special Publ. ESA SP SP-740; European Space Agency: Paris, France, 2016; pp. 9–13. [Google Scholar]
- Porcelli, M. Le Cavette di Bauxite di Spinazzola nelle Immagini D’archivio: Una Scoperta che vive nel Ricordo; Ricerche Speleologiche, n°1; Centro Altamurano Ricerche Speleologiche: Apulia, Italy, 2006. [Google Scholar]
- Ducart, D.F.; Silva, A.M.; Bemfica, C.L.; de Assis, L.M. Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás, Mineral Province, Brazil. Braz. J. Geol. 2016, 46, 331–349. [Google Scholar] [CrossRef]
- Van der Werff, H.; Van der Meer, F. Sentinel-2A MSI and Landsat 8 OLI Provide Data Continuity for Geological Remote Sensing. Remote Sens. 2016, 8, 883. [Google Scholar] [CrossRef] [Green Version]
- Rouskov, K.; Popov, K.; Stanislav Stoykov, S.; Yamaguchi, Y. Some applications of the remote sensing in geology by using of ASTER images. In Proceedings of the Scientific Conference “SPACE, ECOLOGY, SAFETY” with International Participation, Sofia, Bulgaria, 10–13 June 2005. [Google Scholar]
- Emery, X. Statistical tests for validating geostatistical simulation algorithms. Comput. Geosci. 2008, 34, 1610–1620. [Google Scholar] [CrossRef]
- Boisvert, J.B.; Rossi, M.E.; Ehrig, K.; Deutschbeucer, C.V. Geometallurgical modeling at Olympic Dam Mine, South Australia. Math. Geosci. 2013, 45, 901–925. [Google Scholar] [CrossRef]
- Rossi, M.E.; Deutsch, C.V. Mineral Resource Estimation; Springer Science+Business Media: Dordrecht, The Netherlands, 2014; Volume XIV, p. 332. [Google Scholar] [CrossRef]
- Dimitrakopoulos, R. Conditional simulation algorithms for modelling orebody uncertainty in open pit optimization. Int. J. Surf. Min. Reclam. Environ. 2007, 12, 173–179. [Google Scholar] [CrossRef]
- Wackernagel, H. Multivariate Geostatistics. In An Introduction with Applications; Springer: Heidelberg/Berlin, Germany, 2003; pp. 121–208. [Google Scholar] [CrossRef]
- Chiles, J.P.; Delfiner, P. Geostatistics Modeling Spatial Uncertainty, 2nd ed.; Wiley: Hoboken, NJ, USA, 2012; ISBN 978-0-470-18315-1. [Google Scholar]
- Mongelli, G.; Boni, M.; Oggiano, G.; Mameli, P.; Sinisi, R.; Buccione, R.; Mondillo, N. Critical metals distribution in Tethyan karst bauxite: The cretaceous Italian ores. Ore Geol. Rev. 2017, 86, 526–536. [Google Scholar] [CrossRef]
- Spalluto, L.; Caffau, M. Stratigraphy of the mid-Cretaceous shallow-water limestone of the Apulia Carbonate Platform (Murge, Apulia, southern Italy). Ital. J. Geosci. 2010, 129, 335–352. [Google Scholar] [CrossRef]
- Brinkman, R. Ferrolysis, a hydromorphic soil forming process. Geoderma 1970, 3, 199–206. [Google Scholar] [CrossRef]
- Mongelli, G. Ce-anomalies in the textural components of Upper Cretaceous karst bauxites from the Apulian carbonate platform (southern Italy). Chem. Geol. 1997, 140, 69–79. [Google Scholar] [CrossRef]
- Braga, R.; Cinelli, G. The gabbro and serpentinized peridotite of Bonassola (Bracco-Levanto ophiolite, Italy) -an extremely low natural radiation area to improve in situ gamma spectrometry. Ofioliti 2014, 39, 43–49. [Google Scholar] [CrossRef]
Feature | Sentinel-2A Bands Central Wavelength | PRISMA Bands Central Wavelength |
---|---|---|
Iron oxides | 4 (665 nm)/2 (490 nm) | 28 (660 nm)/8 (492 nm) |
Laterite | 11 (1610 nm)/12 (2190 nm) | 105 (1606 nm)/148 (2190 nm) |
Ferric oxides | 11 (1610 nm)/8 (842 nm) | 105 (1606 nm)/46 (844 nm) |
Ferrous iron oxides | 4 (665 nm)/11 (1610 nm) | 28 (660 nm)/105 (1606 nm) |
Ferric iron | 4 (665 nm)/3 (560 nm) | 28 (660 nm)/17 (562 nm) |
Variables | Coefficient Correlation | Reference Image |
---|---|---|
Al and iron oxides band ratio | 0.631 | Sentinel-2 |
Al and iron oxides band ratio | 0.595 | Prisma |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasmaeeyazdi, S.; Braga, R.; Tinti, F.; Mandanici, E. Mapping Bauxite Mining Residues Using Remote Sensing Techniques. Mater. Proc. 2021, 5, 91. https://doi.org/10.3390/materproc2021005091
Kasmaeeyazdi S, Braga R, Tinti F, Mandanici E. Mapping Bauxite Mining Residues Using Remote Sensing Techniques. Materials Proceedings. 2021; 5(1):91. https://doi.org/10.3390/materproc2021005091
Chicago/Turabian StyleKasmaeeyazdi, Sara, Roberto Braga, Francesco Tinti, and Emanuele Mandanici. 2021. "Mapping Bauxite Mining Residues Using Remote Sensing Techniques" Materials Proceedings 5, no. 1: 91. https://doi.org/10.3390/materproc2021005091
APA StyleKasmaeeyazdi, S., Braga, R., Tinti, F., & Mandanici, E. (2021). Mapping Bauxite Mining Residues Using Remote Sensing Techniques. Materials Proceedings, 5(1), 91. https://doi.org/10.3390/materproc2021005091