Current Alternatives for In-Can Preservation of Aqueous Paints: A Review †
Abstract
:1. Introduction
2. Current Industrial Trends in the Preservation of Waterborne Paint
2.1. Blending of Biocide Formulations
2.2. Metal-Based Additives
3. Novel Bio-Based Trends in the Preservation of Waterborne Paint
- (i)
- All types of isothiazolines are inherent skin sensitizers, although at different concentrations. The classification of MIT as a skin sensitizer at a low concentration might set a precedent for other types, such as CMIT, CMIT/MIT and BIT, finally leading to homogenized legislation and reduced usage of all isothiazolines. The eventual scarcity in supply and banning of common isothiazolines threaten the paint industry.
- (ii)
- Micro-organisms are developing increased tolerance against isothiazolines and need exposure to different classes of biocides.
3.1. Acids
3.2. Antimicrobial Polymers
3.3. Bio-Engineered Enzymes and Peptide-Based Polymers
3.4. Antimicrobial Nanocellulose
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lorenzen, J.; Poulsen, S. Eco-Friendly Production of Waterborne Paint; The Danish Environmental Protection Agency: Odense, Denmark, 2021. [Google Scholar]
- Kharadi, N.; Mistry, R. Economic Impact of Losing Effective In-Can Preservatives; International Association for Soaps, Detergents and Maintenance Products: London, UK, 2018. [Google Scholar]
- Silva, V.; Silva, C.; Soares, P.; Garrido, E.M.; Borges, F.; Garrido, J. Isothiazolinone biocides: Chemistry, biological and toxicity profiles. Molecules 2020, 5, 991. [Google Scholar] [CrossRef] [Green Version]
- Müller, A.; Schmal, V.; Gschrei, S. Survey on Alternatives for In-Can Preservation for Varnishes, Paints and Adhesives; Federal Institute for Occupational Safety and Health: Berlin, Germany, 2020. [Google Scholar]
- Paulus, W. Relationship between chemical structure and activity or mode of action of microbiocides. In Directory of Microbiocides for the Protection of Materials; Paulus, W., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 9–22. [Google Scholar]
- Gillatt, J.; Julian, K.; Brett, K.; Goldbach, M.; Grohmann, J.; Heer, B.; Nichols, K.; Roden, K.; Rook, T.; Schubert, T.; et al. The microbial resistance of polymer dispersions and the efficacy of polymer dispersion biocides—A statistically validated method. Int. Biodeterior. Biodegrad. 2015, 104, 32–37. [Google Scholar] [CrossRef]
- Wales, A.D.; Davies, R.H. Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens. Antibiotics 2015, 4, 567–604. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.J.; Lim, K.B.; Lee, J.Y.; Kwack, S.J.; Kwon, Y.C.; Kang, J.S.; Kim, H.S.; Lee, B.M. Risk assessment of 5-chloro-2-methylisothiazol-3(2h)-one/2-methylisothiazol-3(2h)-one (cmit/mit) used as a preservative in cosmetics. Toxicol. Res. 2019, 35, 103–117. [Google Scholar] [CrossRef]
- Betancur, J.; Browne, B.A. Innovating in-can preservatives depends on finding and testing the perfect blend. Paint Coat. Ind. 2021, 17, 8–15. [Google Scholar]
- Rees, R. Guidance on the Use of Globally-Relevant Modern Biocides; Technical Papers; The Pressure Sensitive Tape Council: Lake Buena Vista, FL, USA, 2013; Volume 38, pp. 1–5. [Google Scholar]
- BASF. Industrial Product Preservation; BASF: Ludwigshafen, Germany, 2000. [Google Scholar]
- Brown, S.A. Past, present, and future options for preservative in coatings. Coat. World 2017, 3, 1–5. [Google Scholar]
- Chervenak, M.C.; Konst, G.B.; Schwingel, W. Non-traditional use of the biocide DBNPA in coatings manufacture. JCT Coat. Technol. 2005, 2, 38–42. [Google Scholar]
- Bellotti, N.; Romagnoli, R.; Quintero, C.; Dominguez-Wong, C.; Ruiz, F.; Deya, C. Nanoparticles as antifungal additives for indoor water borne paints. Prog. Org. Coat. 2015, 86, 33–40. [Google Scholar] [CrossRef]
- Dankova, M.; Kalendova, A.; Machotova, J. Waterborne coatings based on acrylic latex containing nanostructured ZnO as an active additive. J. Coat. Technol. Res. 2020, 17, 517–529. [Google Scholar] [CrossRef]
- Fiori, J.J.; Silva, L.L.; Picolli, K.C.; Ternus, R.; Ilha, J.; Decalton, F.; Mello, J.M.M.; Riella, H.G.; Fiori, M.A. Zinc oxide nanoparticles as antimicrobial additive for acrylic paint. Mater. Sci. Forum 2017, 899, 148–253. [Google Scholar] [CrossRef]
- Kamal, H.B.; Antoniuos, M.S.; Mekewi, M.A.; Badawi, A.M.; Gabr, A.M.; El Bagdady, K. Nano ZnO/amine composites antimicrobial additives to acrylic paints. Egypt J. Petrol. 2015, 24, 397–404. [Google Scholar] [CrossRef] [Green Version]
- Steinerova, D.; Kalendova, A.; Machotova, J.; Pejchalova, M. Environmentally friendly water-based self-crosslinking acrylate dispersion containing magnesium nanoparticles and their films exhibiting antimicrobial properties. Coatings 2020, 10, 340. [Google Scholar] [CrossRef] [Green Version]
- Dileep, P.; Jacob, S.; Narayanankutty, S.K. Functionalized nanosilica as an antimicrobial additive for waterborne paints. Prog. Org. Coat. 2020, 142, 105574. [Google Scholar] [CrossRef]
- Hendessi, S.; Sevinins, E.B.; Unal, S.; Cebeci, F.C.; Menceloglu, Y.Z.; Unal, H. Antibacterial sustained-release coatings from halloysite nanotubes/waterborne polyurethanes. Prog. Org. Coat. 2015, 101, 253–261. [Google Scholar] [CrossRef]
- Stanojevick-Nikolic, S.; Dimic, G.; Mojovic, L.; Pejin, J.; Djukic-Vukovic, A.; Kocic-Tanackov, S. Antimicrobial activity of lactic acid against pathogen and spoilage microorganisms. J. Food Proc. Pres. 2015, 40, 990–998. [Google Scholar] [CrossRef]
- Pasricha, A.; Bhalla, P.; Sharma, K.B. Evaluation of lactic acid as an antibacterial agent. Indian J. Dermatol. Venereol. Leprol. 1979, 45, 159–161. [Google Scholar] [PubMed]
- Amrouche, T.; Noll, K.S.; Wang, Y.; Huang, Q.; Chikindas, M.L. Antibacterial activity of subtilosin alone and combined with curcumin, poly-lysine and zinc lactate against listeria monocytogenes strains. Probiotics Antimicrob. Prot. 2010, 2, 250–257. [Google Scholar] [CrossRef]
- Gómez-García, M.; Sol, C.; de Nova, P.J.; Puyalto, M.; Mesas, L.; Puente, H.; Mencía-Ares, Ó.; Miranda, R.; Argüello, H.; Rubio, P.; et al. Antimicrobial activity of a selection of organic acids, their salts and essential oils against swine enteropathogenic bacteria. Porc. Heatlh Manag. 2019, 5, 32. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, A.M.; Carrasco, L.D. Cationic antimicrobial polymers and their assemblies. Int. J. Mol. Sci. 2013, 14, 9905–9946. [Google Scholar]
- Kamaruzzaman, N.F.; Tan, L.P.; Hamdan, R.H.; Choong, S.S.; Woing, W.K.; Gibson, A.J.; Chivu, A.; Pina, M. Antimicrobial polymers: The potential replacement of existing antibiotics. Int. J. Mol. Sci. 2019, 20, 2747. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Chen, R.; Li, T.; Ma, P.; Zhang, H.; Du, M.; Chen, M.; Dong, W. Antimicrobial waterborne polyurethanes based on quaternary ammonium compounds. Ind. Eng. Chem. Res. 2020, 59, 458–463. [Google Scholar] [CrossRef]
- Zhao, P.; Mecozzi, F.; Wessel, S.; Fieten, B.; Driesse, M.; Woudstra, W.; Busscher, H.J.; Mei, H.C.; Loontjens, T.J.A. Preparation and evaluation of antimicrobial hyperbranched emulsifiers for waterborne coatings. Langmuir 2019, 35, 5779–5786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Gan, J.; Yang, F.; Zhang, H.; Wang, W. Preparation and antibacterial properties of waterborne UV cured coating modified by quaternary ammonium compounds. J. Appl. Polym. Sci. 2021, 138, 50426. [Google Scholar] [CrossRef]
- Wada, T.; Uragami, T.; Matoba, Y. Chitosan-hybridized acrylic resins prepared in emulsion polymerizations and their application as interior finishing coatings. JCT Res. 2005, 2, 577–592. [Google Scholar] [CrossRef]
- Wada, T.; Yasuda, M.; Yako, H.; Matoba, Y.; Uragami, T. Preparation and characterization of hybrid quaternized chitosan/acrylic resin emulsions and their films. Macromol. Mater. Eng. 2007, 292, 147–154. [Google Scholar] [CrossRef]
- Rihayat, T.; Satriananda, S.; Nurhanifa, R. Influence of coating polyurethane with mixture of bentonite and chitosan nanocomposites. AIP Conf. Proc. 2018, 2049, 020020. [Google Scholar]
- Abolude, O.I. Modification of Emulsion Paint Using Chitosan-Grafted Acrylic Acid. Master’s Thesis, Ahmadu Bello University, Zaria, Nigeria, 2016. [Google Scholar]
- Hodges, T.W.; Kemp, L.K.; McInnes, B.M.; Wilhelm, K.L.; Hurt, J.D.; McDaniel, S.; Rawlins, J.W. Proteins and Peptides as Replacements for Traditional Organic Preservatives. Coat. Technol. 2018, 15, 45–50. [Google Scholar]
- McDaniel, S.; McInnis, B.M.; Hurt, J.D.; Kemp, L.K. Biotechnology meets coatings preservation. Coat. World 2019, 12, 33–42. [Google Scholar]
- Kluge, M.; Veigel, S.; Pinkl, S.; Henniges, U.; Zollfrank, C.; Rössler, A.; Gindl-Altmutter, W. Nanocellulosic fillers for waterborne wood coatings: Reinforcement effect on free-standing coating films. Wood Sci. Technol. 2017, 51, 601–613. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Sanchez, A.; Jalvo, B.; Mautner, A.; Nameer, S.; Pöhler, T.; Tammelin, T.; Mathew, A.J. aterborne nanocellulose coatings for improving the antifouling and antibacterial proper-ties of polyethersulfone membranes. J. Membrane Sci. 2021, 620, 118842. [Google Scholar] [CrossRef]
- Norrahim, M.; Nurazzi, N.M.; Jenol, M.A.; Farid, M.A.; Janudin, N.; Ujang, F.A.; Yasim-Anuar, T.A.; Najmuddine, S.U.; Ilyasf, R.A. Emerging development of nanocellulose as an antimicrobial material: An overview. Mater. Adv. 2021, 2, 3538–3551. [Google Scholar] [CrossRef]
- Tan, Y.; Liu, Y.; Chen, W.; Liu, Y.; Wang, Q.; Li, J.; Yu, H. Homogeneous dispersion of cellulose nanofibers in waterborne acrylic coatings with improved properties and unreduced transparency. ACS Sustain. Chem. Eng. 2016, 4, 3766–3772. [Google Scholar] [CrossRef]
- Hassan, M.L.; Fadel, S.M.; Hassan, E.A. Acrylate/nanofibrillated cellulose nanocomposites and their use for paper coating. J. Nanomater. 2018, 2018, 4963834. [Google Scholar] [CrossRef]
Organism | Minimum Inhibitory Concentration (MIC) (ppm) | ||||
---|---|---|---|---|---|
BIT | MIT | CMIT | MIT/BIT | CMIT/MIT | |
Escherichia coli (b) | 25 | 17.5 | 10 | 9.0 | |
Klebsiella pneumoniae (b) | 25 | 20 | 15 | 9.0 | |
Pseudomonas aeruginosa (b) | 150 | 30 | 0.6 | 20 | 11.2 |
Pseudomonas putida (b) | 60 | 12.5 | 0.2 | 10 | |
Pseudomonas stutzeri (b) | 20 | 12.5 | 10 | ||
Aspergillus niger (m) | 100 | 750 | 50 | 9.0 | |
Candida albicans (y) | 200 | 75 | 9.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samyn, P.; Bosmans, J.; Cosemans, P. Current Alternatives for In-Can Preservation of Aqueous Paints: A Review. Mater. Proc. 2021, 7, 18. https://doi.org/10.3390/IOCPS2021-11245
Samyn P, Bosmans J, Cosemans P. Current Alternatives for In-Can Preservation of Aqueous Paints: A Review. Materials Proceedings. 2021; 7(1):18. https://doi.org/10.3390/IOCPS2021-11245
Chicago/Turabian StyleSamyn, Pieter, Joey Bosmans, and Patrick Cosemans. 2021. "Current Alternatives for In-Can Preservation of Aqueous Paints: A Review" Materials Proceedings 7, no. 1: 18. https://doi.org/10.3390/IOCPS2021-11245
APA StyleSamyn, P., Bosmans, J., & Cosemans, P. (2021). Current Alternatives for In-Can Preservation of Aqueous Paints: A Review. Materials Proceedings, 7(1), 18. https://doi.org/10.3390/IOCPS2021-11245