Heavy Metal Contamination of Sediments from an Exoreic African Great Lakes’ Shores (Port Bell, Lake Victoria), Uganda
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Area
2.2. Collection and Preparation of Samples
- (i)
- SP1 is at the end of the terminal where Nakivubo channel pours its water into Port Bell.
- (ii)
- SP2 is situated near the shores of Nakivubo channel.
- (iii)
- SP3 is at the extreme end of the port towards the mainland.
2.3. Analysis of Physicochemical Parameters
2.4. Heavy Metal Analysis
2.5. Human Health Risk Assessment
2.6. Sediment Quality Assessment
2.7. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Parameters and HMs Concentration of the Sediment Samples
Lake (Country) | Cu | Pb | Cr | Cd | References |
---|---|---|---|---|---|
L. Victoria (Uganda) | 6.467 | 42.184 | 0.456 | 3.283 | This study |
L. Victoria (Uganda) | 41.0 | ND | 67.0 | ND 4 | Mothersill [79] |
L. Victoria (Tanzania) 1 | 26.1 | 29.6 | 11.0 | 2.5 | Kishe and Machiwa [81] |
L. Victoria (Tanzania) 1 | BDL–147 3 | 17–1922 | ND | ND | Makundi [82] |
L. Victoria (Kenya) 2 | 39.8 | 37.7 | ND | 0.5 | Onyari [83] |
L. Victoria (Kenya) 2 | 14–259 | 195 | 12–84 | 12–84 | Outa et al. [76] |
Lake Manzala (Egypt) | 0.11 | 0.50 | ND | 0.002 | Redwan and Elhaddad [84] |
Northern Delta Lakes: Edku, Borollus and Manzala (Egypt) | 12.71–412.00 | BDL–193.25 | ND | BDL–110.00 | Saeed and Shaker [85] |
Lake of Ahémé (Benin) | ND | 2.78–92.6 | ND | 0.33–3.50 | Hounkpè et al. [86] |
Lake Bafa (Turkey) | 19.55–25.28 | 10.12–13.75 | 59.2–80.97 | 0.40–1.02 | Algül and Beyhan [74] |
East Dongting Lake (China) | 0.7262–0.7720 | 55.54–61.13 | 109.4–121.63 | 0.92–1.03 | Yan et al. [87] |
46.35 | 35.15 | 33.06 | 2.74 | Makokha et al. [88] | |
Honghu Lake (China) | 78.0 | 20.66 | 25.0 | 0.14 | Makokha et al. [88] |
Yilong Lake (China) | 31.4 | 53.19 | 0.76 | 86.73 | Bai et al. [89] |
Veeranam Lake (India) | 94.12 | 30.06 | 88.2 | 0.81 | Suresh et al. [90] |
Hussain Sagar Lake (India) | 90.108 | 79.885 | 90.0 | 19.89 | Ayyanar et al. [91] |
Zariwar Lake (Iran) | 16.97 | ND | 74.41 | 0.25 | Kachoosangi et al. [92] |
Lake Van (Turkey) | 20.0 | 5.0 | 46.0 | ND | Erenturk et al. [93] |
Dongting Lake (China) | 47.48 | 60.99 | 4.65 | 88.29 | Li et al. [94] |
Sediment quality guidelines | |||||
Average shale value | 45.0 | 20.0 | 90.0 | 0.3 | Turekian and Wedepohl [95] |
Toxicity reference value | 16.0 | 31.0 | 26.0 | 0.6 | US EPA [96] |
Threshold effect concentration (TEC) | 31.6 | 35.8 | 43.4 | 0.99 | MacDonald et al. [75] |
149.0 | 128.0 | 111.0 | 4.99 |
3.2. Human Health Risk Assessment Results
3.3. Sediment Quality Assessment Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santhakumari, M.; Sagar, N. The Environmental Threats Our World Is Facing Today. In Handbook of Environmental Materials Management; Hussain, C., Ed.; Springer: Cham, Switzerland, 2020; pp. 1–20. [Google Scholar]
- King, E.A. Here, There, and Everywhere: How the SDGs Must Include Noise Pollution in Their Development Challenges. Environ. Sci. Policy Sustain. Dev. 2022, 64, 17–32. [Google Scholar] [CrossRef]
- Shezi, B.; Street, R.A.; Webster, C.; Kunene, Z.; Mathee, A. Heavy Metal Contamination of Soil in Preschool Facilities around Industrial Operations, Kuils River, Cape Town (South Africa). Int. J. Environ. Res. Public Health 2022, 19, 4380. [Google Scholar] [CrossRef]
- Angom, J.; Angiro, C.; Omara, T. Air Quality Improvement from COVID-19 Lockdown in the East African Community: Evidences from Kampala and Nairobi Cities. OALib 2021, 08, 1107389. [Google Scholar] [CrossRef]
- Jenny, J.; Anneville, O.; Arnaud, F.; Baulaz, Y.; Bouffard, D.; Domaizon, I.; Bocaniov, S.A.; Chèvre, N.; Dittrich, M.; Dorioz, J.-M.; et al. Scientists’ Warning to Humanity: Rapid degradation of the world’s large lakes. J. Great Lakes Res. 2020, 46, 686–702. [Google Scholar] [CrossRef]
- Ochola, G.O. Natural Resource Use Dilemma: A Review of Effects of Population Growth on Natural Resources in Kenya. Int. J. Environ. Sci. Nat. Resour. 2018, 13, 555867. [Google Scholar] [CrossRef]
- E Alam, N.; Salam, M.A.; Dewanjee, S.; Hasan, F.; Rahman, H.; Rak, A.E.; Islam, A.R.M.T.; Miah, Y. Distribution, Concentration, and Ecological Risk Assessment of Trace Metals in Surface Sediment of a Tropical Bangladeshi Urban River. Sustainability 2022, 14, 5033. [Google Scholar] [CrossRef]
- Twinomucunguzi, F.R.B.; Nyenje, P.M.; Kulabako, R.N.; Semiyaga, S.; Foppen, J.W.; Kansiime, F. Emerging organic contaminants in shallow groundwater underlying two contrasting peri-urban areas in Uganda. Environ. Monit. Assess. 2021, 193, 228. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Mol. Clin. Environ. Toxicol. 2012, 101, 133–164. [Google Scholar] [CrossRef]
- Edelstein, M.; Ben-Hur, M. Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Sci. Hortic. 2018, 234, 431–444. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Wojciechowska, E.; Nawrot, N.; Walkusz-Miotk, J.; Matej-Łukowicz, K.; Pazdro, K. Heavy Metals in Sediments of Urban Streams: Contamination and Health Risk Assessment of Influencing Factors. Sustainability 2019, 11, 563. [Google Scholar] [CrossRef]
- Nargis, A.; Harun-Or-Rashid; Jhumur, A.K.; Haque, M.E.; Islam, M.N.; Habib, A.; Cai, M. Human health risk assessment of toxic elements in fish species collected from the river Buriganga, Bangladesh. Hum. Ecol. Risk Assess 2020, 26, 120–146. [Google Scholar] [CrossRef]
- Omara, T.; Karungi, S.; Kalukusu, R.; Nakabuye, B.V.; Kagoya, S.; Musau, B. Mercuric pollution of surface water, superficial sediments, Nile tilapia (Oreochromis nilotica Linnaeus 1758 [Cichlidae]) and yams (Dioscorea alata) in auriferous areas of Namukombe stream, Syanyonja, Busia, Uganda. PeerJ. 2019, 7, 7919. [Google Scholar] [CrossRef] [PubMed]
- Mayoma, B.S.; Sørensen, C.; Shashoua, Y.; Khan, F.R. Microplastics in beach sediments and cockles (Anadara antiquata) along the Tanzanian coastline. Bull. Environ. Contam. Toxicol. 2020, 105, 513–521. [Google Scholar] [CrossRef]
- Kandie, F.J.; Krauss, M.; Massei, R.; Ganatra, A.; Fillinger, U.; Becker, J.; Liess, M.; Torto, B.; Brack, W. Multi-compartment chemical characterization and risk assessment of chemicals of emerging concern in freshwater systems of western Kenya. Environ. Sci. Eur. 2020, 32, 115. [Google Scholar] [CrossRef]
- Nawrot, N.; Wojciechowska, E.; Mohsin, M.; Kuittinen, S.; Pappinen, A.; Rezania, S. Trace Metal Contamination of Bottom Sediments: A Review of Assessment Measures and Geochemical Background Determination Methods. Minerals 2021, 11, 872. [Google Scholar] [CrossRef]
- Shah-Kulkarni, S.; Lee, S.; Jeong, K.S.; Hong, Y.-C.; Park, H.; Ha, M.; Kim, Y.; Ha, E.-H. Prenatal exposure to mixtures of heavy metals and neurodevelopment in infants at 6 months. Environ. Res. 2020, 182, 109122. [Google Scholar] [CrossRef]
- Zeng, X.; Xu, X.; Zheng, X.; Reponen, T.; Chen, A.; Huo, X. Heavy metals in PM2.5 and in blood, and children’s respiratory symptoms and asthma from an e-waste recycling area. Environ. Pollut. 2016, 210, 346–353. [Google Scholar] [CrossRef]
- Salem, H.M.; Eweida, E.A.; Farag, A. Heavy metals in drinking water and their environmental impact on human health. In Proceedings of the International Conference for Environmental Hazard Mitigation ICEHM 2000, Cairo University, Cairo, Egypt, 9–12 September 2000. [Google Scholar]
- Manna, K.; Debnath, B.; Singh, W.S. Sources and toxicological effects of lead on human health. Indian J. Med Spéc. 2019, 10, 66. [Google Scholar] [CrossRef]
- WHO. Exposure to Lead: A Major Public Health Concern, 2nd ed.; World Health Organization: Geneva, Switzerland, 2021. Available online: https://www.who.int/publications/i/item/9789240037656 (accessed on 30 July 2022).
- Saeed, S.; Hasan, S.; Kuldeep; Choudhury, P. Lead Poisoning: A Persistent Health Hazard-General and Oral Aspects. Biomed. Pharmacol. J. 2017, 10, 439–445. [Google Scholar] [CrossRef]
- Kim, H.-C.; Jang, T.-W.; Chae, H.-J.; Choi, W.-J.; Ha, M.-N.; Ye, B.-J.; Kim, B.-G.; Jeon, M.-J.; Kim, S.-Y.; Hong, Y.-S. Evaluation and management of lead exposure. Ann. Occup. Environ. Med. 2015, 27, 30. [Google Scholar] [CrossRef] [PubMed]
- Njiru, J.; van der Knaap, M.; Kundu, R.; Nyamweya, C. Lake Victoria fisheries: Outlook and management. Lakes Reserv. Sci. Policy Manag. Sustain. Use 2018, 23, 152–162. [Google Scholar] [CrossRef]
- Moon, W.; Hannachi, A. River Nile discharge, the Pacific Ocean and world climate—A seasonal synchronization perspective. Tellus A 2021, 73, 1–12. [Google Scholar] [CrossRef]
- Ndegwa, D.M.; Nyamweya, C.S.; Obuba, E. Ecotroph: A simple model to assess fishing and trophic interactions in Lake Victoria. Int. J. Fish Aquat. Stud. 2019, 7, 210–215. [Google Scholar]
- Evans, H. Setting Sail on Lake Victoria to Beat Plastic Pollution. Available online: https://s.the-star.co.ke/-setting-sail-on-lake-victoria-to-beat-plastic-pollution-/index.html?&external (accessed on 20 March 2022).
- Kayombo, S.; Jorgenson, S. Lake Victoria: Experiences and Lessons Learned Brief. 2006. Available online: https://www.ilec.or.jp/wp-content/uploads/pub/27_Lake_Victoria_27February2006.pdf (accessed on 1 September 2022).
- Nicholson, H. Investigation of Microplastics in the Tilapia found in Lake Victoria, Kenya. Master’s Thesis, University of Nottingham, Nottingham, UK, 2021. [Google Scholar]
- Howell, B. The 11 Most Polluted Bodies of Water Around the World. 2021. Available online: https://www.theecoexperts.co.uk/blog/the-most-polluted-bodies-of-water (accessed on 15 March 2022).
- Ngupula, G.; Kayanda, R.; Mashafi, C. Abundance, composition and distribution of solid wastes in the Tanzanian waters of Lake Victoria. Afr. J. Aquat. Sci. 2014, 39, 229–232. [Google Scholar] [CrossRef]
- Egessa, R.; Nankabirwa, A.; Basooma, R.; Nabwire, R. Occurrence, distribution and size relationships of plastic debris along shores and sediment of northern Lake Victoria. Environ. Pollut. 2019, 257, 113442. [Google Scholar] [CrossRef]
- Egessa, R.; Nankabirwa, A.; Ocaya, H.; Pabire, W.G. Microplastic pollution in surface water of Lake Victoria. Sci. Total Environ. 2020, 741, 140201. [Google Scholar] [CrossRef]
- Biginagwa, F.J.; Mayoma, B.S.; Shashoua, Y.; Syberg, K.; Khan, F.R. First evidence of microplastics in the African Great Lakes: Recovery from Lake Victoria Nile perch and Nile tilapia. J. Great Lakes Res. 2016, 42, 146–149. [Google Scholar] [CrossRef]
- Kerebba, N.; Ssebugere, P.; Kwetegyeka, J.; Arinaitwe, K.; Wasswa, J. Concentrations and sources apportionment of polycyclic aromatic hydrocarbons in sediments from the Uganda side of Lake Victoria. Environ. Sci. Process. Impacts 2017, 19, 570–577. [Google Scholar] [CrossRef]
- Kwach, B.O.; Lalah, J.O.; Shem, W.O. Spartial and Seasonal Variations in Concentrations of Polycyclic Aromatic Hydrocarbons in Water and Sediment of Kisumu City Bay of Winam Gulf, Lake Victoria-Kenya. Bull. Environ. Contam. Toxicol. 2009, 83, 734–741. [Google Scholar] [CrossRef]
- Mahugija, J.A.M.; Njale, E. Levels of polycyclic aromatic hydrocarbons (PAHs) in smoked and sun-dried fish samples from areas in Lake Victoria in Mwanza, Tanzania. J. Food Compos. Anal. 2018, 73, 39–46. [Google Scholar] [CrossRef]
- Orata, F.; Quinete, N.; Maes, A.; Werres, F.; Wilken, R. Perfluorooctanoic acid and perfluorooctane sulfonate in Nile Perch and tilapia from gulf of Lake Victoria. Afr. J. Pure Appl. Chem. 2008, 2, 75–79. [Google Scholar]
- Orata, F.; Quinete, N.; Werres, F.; Wilken, R.-D. Determination of Perfluorooctanoic Acid and Perfluorooctane Sulfonate in Lake Victoria Gulf Water. Bull. Environ. Contam. Toxicol. 2008, 82, 218–222. [Google Scholar] [CrossRef]
- Dalahmeh, S.; Tirgani, S.; Komakech, A.J.; Niwagaba, C.B.; Ahrens, L. Per- and polyfluoroalkyl substances (PFASs) in water, soil and plants in wetlands and agricultural areas in Kampala, Uganda. Sci. Total Environ. 2018, 631–632, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Nantaba, F.; Wasswa, J.; Kylin, H.; Palm, W.-U.; Bouwman, H.; Kümmerer, K. Occurrence, distribution, and ecotoxicological risk assessment of selected pharmaceutical compounds in water from Lake Victoria, Uganda. Chemosphere 2019, 239, 124642. [Google Scholar] [CrossRef] [PubMed]
- Arinaitwe, K.; Kiremire, B.T.; Muir, D.C.; Fellin, P.; Li, H.; Teixeira, C.; Mubiru, D.N. Legacy and currently used pesticides in the atmospheric environment of Lake Victoria, East Africa. Sci. Total Environ. 2015, 543, 9–18. [Google Scholar] [CrossRef]
- Arinaitwe, K.; Muir, D.C.G.; Kiremire, B.T.; Fellin, P.; Li, H.; Teixeira, C. Polybrominated Diphenyl Ethers and Alternative Flame Retardants in Air and Precipitation Samples from the Northern Lake Victoria Region, East Africa. Environ. Sci. Technol. 2014, 48, 1458–1466. [Google Scholar] [CrossRef]
- Wang, S.; Steiniche, T.; Romanak, K.A.; Johnson, E.; Quirós, R.; Mutegeki, R.; Wasserman, M.D.; Venier, M. Atmospheric Occurrence of Legacy Pesticides, Current Use Pesticides, and Flame Retardants in and around Protected Areas in Costa Rica and Uganda. Environ. Sci. Technol. 2019, 53, 6171–6181. [Google Scholar] [CrossRef]
- Mchau, G.J.; Machunda, R.; Kimanya, M.; Makule, E.; Gong, Y.Y.; Mpolya, E.; Meneely, J.P.; Elliott, C.T.; Greer, B. First Report of the Co-occurrence of Cylindrospermopsin, Nodularin and Microcystins in the Freshwaters of Lake Victoria, Tanzania. Expo. Health 2020, 13, 185–194. [Google Scholar] [CrossRef]
- Roegner, A.; Sitoki, L.; Weirich, C.; Corman, J.; Owage, D.; Umami, M.; Odada, E.; Miruka, J.; Ogari, Z.; Smith, W.; et al. Harmful Algal Blooms Threaten the Health of Peri-Urban Fisher Communities: A Case Study in Kisumu Bay, Lake Victoria, Kenya. Expo. Health 2020, 12, 835–848. [Google Scholar] [CrossRef]
- Githukia, C.; Onyango, D.; Lusweti, D.; Ramkat, R.; Kowenje, C.; Miruka, J.; Lung’Ayia, H.; Orina, P. An Analysis of Knowledge, Attitudes and Practices of Communities in Lake Victoria, Kenya on Microcystin Toxicity. Open J. Ecol. 2022, 12, 198–210. [Google Scholar] [CrossRef]
- Musisi, F. Port Bell Set for Major Revamp in 108 Years. 2016. Available online: http://www.monitor.co.ug/artsculture/Reviews/Port-Bell-set-for-major-revamp-in-108-years/691232-3358428-item-00-10ss3p2/index.html (accessed on 12 July 2022).
- Tenywa, G.; Balagadde, S. Sand Mining Ruining Lake Victoria Fish Breeding Areas (Uganda). 2013. Available online: https://www.business-humanrights.org/en/latest-news/sand-mining-ruining-lake-victoria-fish-breeding-areas-uganda/ (accessed on 15 June 2022).
- Kampala City Guide, Port Bell. 2022. Available online: http://www.kampalacityguide.com/kampala-city/nakawa-division/port-bell.html (accessed on 15 July 2022).
- Wörner, S.; Pester, M. Microbial Succession of Anaerobic Chitin Degradation in Freshwater Sediments. Appl. Environ. Microbiol. 2019, 85, e00963-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- USEPA. Dermal Exposure Assessment: A Summary of EPA Approaches; USEPA: Washington, DC, USA, 2007; p. 20460.
- Omara, T.; Ogwang, R.; Ndyamuhaki, S.; Kagoya, S.; Kigenyi, E.; Musau, B.; Adupa, E. Spectroscopic analysis of selected priority trace metals in the extant East African gilled lungfish (Protopterus amphibius) in Lira municipal lagoon and its edibility health risk. Sci. J. Anal. Chem. 2018, 6, 38–45. [Google Scholar] [CrossRef]
- Nowell, L.H.; Moran, P.W.; Gilliom, R.J.; Calhoun, D.L.; Ingersoll, C.G.; Kemble, N.E.; Kuivila, K.M.; Phillips, P.J. Contaminants in Stream Sediments from Seven United States Metropolitan Areas: Part I: Distribution in Relation to Urbanization. Arch. Environ. Contam. Toxicol. 2012, 64, 32–51. [Google Scholar] [CrossRef]
- Ordóñez, A.; Álvarez, R.; Charlesworth, S.; De Miguel, E.; Loredo, J. Risk assessment of soils contaminated by mercury mining, Northern Spain. J. Environ. Monit. 2010, 13, 128–136. [Google Scholar] [CrossRef]
- Omara, T.; Nteziyaremye, P.; Akaganyira, S.; Opio, D.W.; Karanja, L.N.; Nyangena, D.M.; Kiptui, B.J.; Ogwang, R.; Epiaka, S.M.; Jepchirchir, A.; et al. Physicochemical quality of water and health risks associated with consumption of African lung fish (Protopterus annectens) from Nyabarongo and Nyabugogo rivers, Rwanda. BMC Res. Notes 2020, 13, 66. [Google Scholar] [CrossRef]
- Bamuwamye, M.; Ogwok, P.; Tumuhairwe, V.; Eragu, R.; Nakisozi, H.; Ogwang, P.E. Dietary Content and Potential Health Risks of Metals in Commercial Black Tea in Kampala (Uganda). J. Food Res. 2017, 6, 1. [Google Scholar] [CrossRef]
- Saha, N.; Zaman, M.R. Evaluation of possible health risks of heavy metals by consumption of foodstuffs available in the central market of Rajshahi City, Bangladesh. Environ. Monit. Assess. 2012, 185, 3867–3878. [Google Scholar] [CrossRef]
- Qing, X.; Yutong, Z.; Shenggao, L. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicol. Environ. Saf. 2015, 120, 377–385. [Google Scholar] [CrossRef]
- S Sharma, S.D. Risk assessment via oral and dermal pathways from heavy metal polluted water of Kolleru lake—A Ramsar wetland in Andhra Pradesh, India. Env. Anal. Health Toxicol. 2020, 35, 2020019. [Google Scholar] [CrossRef]
- Håkanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Zhao, W.; Yan, X.; Shu, T.; Xiong, Q.; Chen, F. Pollution Characteristics and Health Risk Assessment of Airborne Heavy Metals Collected from Beijing Bus Stations. Int. J. Environ. Res. Public Health 2015, 12, 9658–9671. [Google Scholar] [CrossRef]
- Müller, G. Die Schwermetallbelastung der Sedimenten des Neckars und Seiner Nebenflüsse. Chem.-Ztg. 1981, 6, 157–164. [Google Scholar]
- Chen, C.; Kao, C.; Chen, C.; Dong, C. Distribution and accumulation of heavy metals in the sediments of Kaohsiung harbor, Taiwan. Chemosphere 2007, 66, 1431–1440. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, H.; Chang, J.; Qu, J.; Xie, H.; Yu, L. Heavy metal contamination in surface sediments of Yangtze River intertidal zone: An assessment from different indexes. Environ. Pollut. 2009, 157, 1533–1543. [Google Scholar] [CrossRef]
- Zheng, N.; Wang, Q.; Liang, Z.; Zheng, D. Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China. Environ. Pollut. 2008, 154, 135–142. [Google Scholar] [CrossRef]
- Kahal, A.; El-Sorogy, A.S.; Qaysi, S.; Almadani, S.; Kassem, O.M.; Al-Dossari, A. Contamination and ecological risk assessment of the Red Sea coastal sediments, southwest Saudi Arabia. Mar. Pollut. Bull. 2020, 154, 111125. [Google Scholar] [CrossRef]
- Lim, W.Y.; Aris, A.Z.; Ismail, T.H.T. Spatial Geochemical Distribution and Sources of Heavy Metals in the Sediment of Langat River, Western Peninsular Malaysia. Environ. Forensics 2013, 14, 133–145. [Google Scholar] [CrossRef]
- Bahiru, D.B. Determination of Heavy Metals in Wastewater and Their Toxicological Implications around Eastern Industrial Zone, Central Ethiopia. J. Environ. Chem. Ecotoxicol. 2020, 12, 72–79. [Google Scholar]
- Das, M.; Ahmed, M.K.; Islam, M.S.; Islam, M.M.; Akter, M.S. Heavy Metals in Industrial Effluents (Tannery and Textile) and Adjacent Rivers of Dhaka City, Bangladesh. Terr. Aquat. Environ. Toxicol. 2014, 5, 8–13. [Google Scholar]
- Huang, X.; Luo, D.; Zhao, D.; Li, N.; Xiao, T.; Liu, J.; Wei, L.; Liu, Y.; Liu, L.; Liu, G. Distribution, Source and Risk Assessment of Heavy Metal (oid)s inWater, Sediments, and Corbicula Fluminea of Xijiang River, China. Int. J. Environ. Res. Public Health 2019, 16, 1823. [Google Scholar] [CrossRef] [PubMed]
- Algül, F.; Beyhan, M. Concentrations and sources of heavy metals in shallow sediments in Lake Bafa, Turkey. Sci. Rep. 2020, 10, 11782. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef]
- Outa, J.O.; Kowenje, C.O.; Plessl, C.; Jirsa, F. Distribution of arsenic, silver, cadmium, lead and other trace elements in water, sediment and macrophytes in the Kenyan part of Lake Victoria: Spatial, temporal and bioindicative aspects. Environ. Sci. Pollut. Res. 2019, 27, 1485–1498. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Huang, G.H.; Guo, H.; Zhang, W.; Hao, Z. Spatio-temporal patterns and source apportionment of coastal water pollution in eastern Hong Kong. Water Res. 2007, 41, 3429–3439. [Google Scholar] [CrossRef]
- Ibrahim, M.I.; Mohamed, L.A.; Mahmoud, M.G.; Shaban, K.S.; Fahmy, M.A.; Ebeid, M.H. Potential ecological hazards assessment and prediction of sediment heavy metals pollution along the Gulf of Suez, Egypt. Egypt. J. Aquat. Res. 2019, 45, 329–335. [Google Scholar] [CrossRef]
- Mothersill, J.S. The mineralogy and geochemistry of the sediments of northwestern Lake Victoria. Sedimentology 1976, 23, 553–565. [Google Scholar] [CrossRef]
- Rader, K.J.; Carbonaro, R.F.; van Hullebusch, E.D.; Baken, S.; Delbeke, K. The Fate of Copper Added to Surface Water: Field, Laboratory, and Modeling Studies. Environ. Toxicol. Chem. 2019, 38, 1386–1399. [Google Scholar] [CrossRef]
- A Kishe, M.; Machiwa, J.F. Distribution of heavy metals in sediments of Mwanza Gulf of Lake Victoria, Tanzania. Environ. Int. 2003, 28, 619–625. [Google Scholar] [CrossRef]
- Makundi, I.N. A Study of Heavy Metal Pollution in Lake Victoria Sediments by Energy Dispersive X-Ray Fluorescence. J. Environ. Sci. Health Part A 2001, 36, 909–921. [Google Scholar] [CrossRef] [PubMed]
- Onyari, J. The concentration of Mn, Fe, Cu, Zn, Cd and Pb in Sediments and Fish from the Winam Gulf of Lake Victoria Bought in Mombasa Town Markets. Master’s Thesis, University of Nairobi, Nairobi, Kenya, 1985. [Google Scholar]
- Redwan, M.; Elhaddad, E. Heavy metal pollution in Manzala Lake sediments, Egypt: Sources, variability, and assessment. Environ. Monit. Assess. 2022, 194, 436. [Google Scholar] [CrossRef] [PubMed]
- Saeed, S.M.; Shaker, I.M. Assessment of heavy metals pollution in water and sediments and their effect on Oreochromis niloticus in the Northern Delta Lakes, Egypt. In Proceedings of the 8th International Symposium on Tilapia in Aquaculture, Cairo, Egypt, 12–14 October 2008; pp. 475–489. [Google Scholar]
- Hounkpè, J.; Kélomè, N.; Adèchina, R.; Lawani, R. Assessment of heavy metals contamination in sediments at the lake of Ahémé in southern of Benin (West Africa). J. Mater. Environ. Sci. 2017, 8, 4369–4377. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, B.; Liu, H. Spatial distribution and source identification for heavy metals in surface sediments of East Dongting Lake, China. Sci. Rep. 2022, 12, 7940. [Google Scholar] [CrossRef]
- Makokha, V.A.; Qi, Y.; Shen, Y.; Wang, J. Concentrations, Distribution, and Ecological Risk Assessment of Heavy Metals in the East Dongting and Honghu Lake, China. Expo. Health 2015, 8, 31–41. [Google Scholar] [CrossRef]
- Bai, J.; Cui, B.; Chen, B.; Zhang, K.; Deng, W.; Gao, H.; Xiao, R. Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China. Ecol. Model. 2011, 222, 301–306. [Google Scholar] [CrossRef]
- Suresh, G.; Sutharsan, P.; Ramasamy, V.; Venkatachalapathy, R. Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India. Ecotoxicol. Environ. Saf. 2012, 84, 117–124. [Google Scholar] [CrossRef]
- Ayyanar, A.; Thatikonda, S. Distribution and ecological risks of heavy metals in Lake Hussain Sagar, India. Acta Geochim. 2019, 39, 255–270. [Google Scholar] [CrossRef]
- Kachoosangi, F.T.; Karbassi, A.; Sarang, A.; Noori, R. Sedimentation rate determination and heavy metal pollution assessment in Zariwar Lake, Iran. SN Appl. Sci. 2020, 2, 1483. [Google Scholar] [CrossRef]
- Erenturk, S.; Yusan, S.; Turkozu, D.A.; Camtakan, Z.; Olgen, M.K.; Aslani, M.A.A.; Aytas, S.; Isik, M.A. Spatial distribution and risk assessment of radioactivity and heavy metal levels of sediment, surface water and fish samples from Lake Van, Turkey. J. Radioanal. Nucl. Chem. Artic. 2014, 300, 919–931. [Google Scholar] [CrossRef]
- Li, F.; Huang, J.; Zeng, G.; Yuan, X.; Li, X.; Liang, J.; Wang, X.; Tang, X.; Bai, B. Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. J. Geochem. Explor. 2013, 132, 75–83. [Google Scholar] [CrossRef]
- Turekian, K.K.; Wedepohl, K.H. Distribution of the elements in some major units of the earth’s crust. Geol. Soc. Am. Bull. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- US Environmental Protection Agency (US EPA). Sediment Quality Guidelines; U.S. Environmental Protection Agency: Washington, DC, USA, 1999.
- Ogoyi, D.O.; Mwita, C.J.; Nguu, E.K.; Shiundu, P.M. Determination of Heavy Metal Content in Water, Sediment and Microalgae from Lake Victoria, East Africa. Open Environ. Eng. J. 2011, 4, 156–161. [Google Scholar]
- Araya, M.; Olivares, M.; Pizarro, F. Copper in human health. Int. J. Environ. Health 2007, 1, 608–620. [Google Scholar] [CrossRef]
- Assi, M.A.; Hezmee, M.N.M.; Haron, A.W.; Sabri, M.Y.M.; Rajion, M.A. The detrimental effects of lead on human and animal health. Vet. World 2016, 9, 660–671. [Google Scholar] [CrossRef] [Green Version]
Class | Degree of Pollution | PERI | |
---|---|---|---|
1 | < 40 | Low | PERI > 95 |
2 | 40 ≤ ≤ 80 | Moderate | 95 ≤ PERI ≤ 190 |
3 | 80 ≤ ≤ 160 | Considerable | 190 ≤ PERI ≤ 380 |
4 | 160 ≤ ≤ 320 | High | PERI ≥ 380 |
5 | 320 ≤ | Very High |
Variables | Cu | Pb | Cr | Cd | pH | Moisture Content |
---|---|---|---|---|---|---|
Cu | 1 | |||||
Pb | 0.907 | 1 | ||||
Cr | 0.672 | 0.922 | 1 | |||
Cd | 0.648 | 0.909 | 0.999 1 | 1 | ||
pH | 0.996 | 0.864 | 0.601 | 0.576 | 1 | |
Moisture content | 0.245 | −0.187 | −0.553 | −0.579 | 0.333 | 1 |
Sampling Point | ADDtherm (×10−6 mg/kg/day) | Hazard Quotient (×10−4) | Hazard Index (×10−3) | ||||||
---|---|---|---|---|---|---|---|---|---|
Cu | Pb | Cr | Cd | Cu | Pb | Cr | Cd | ||
SP1 | 0.31348 | 2.1375 | 0.0251 | 0.1722 | 7.84 | 39.58 | 0.084 | 1.722 | 4.9226 |
SP2 | 0.36088 | 2.2344 | 0.0265 | 0.1752 | 9.02 | 41.38 | 0.088 | 1.752 | 5.2240 |
SP3 | 0.31013 | 2.0413 | 0.0179 | 0.1524 | 7.75 | 37.80 | 0.060 | 1.524 | 4.7134 |
Sampling Point | Cu | Pb | Cr | Cd | PLI | ||||
---|---|---|---|---|---|---|---|---|---|
CF | Igeo | CF | Igeo | CF | Igeo | CF | Igeo | ||
SP1 | 0.137 | −3.464 | 2.106 | 0.489 | 0.005 | −8.094 | 11.310 | 2.915 | 0.3574 |
SP2 | 0.158 | −3.247 | 2.211 | 0.559 | 0.006 | −8.015 | 11.510 | 2.940 | 0.3941 |
SP3 | 0.136 | −3.465 | 2.011 | 0.423 | 0.004 | −8.583 | 10.007 | 2.738 | 0.3239 |
Sampling Point | PERI (Risk Index) | Pollution Degree | ||||
---|---|---|---|---|---|---|
Cu | Pb | Cr | Cd | |||
SP1 | 0.685 | 10.530 | 0.010 | 339.300 | 350.525 | Considerable |
SP2 | 0.790 | 11.055 | 0.012 | 345.300 | 357.157 | Considerable |
SP3 | 0.680 | 10.055 | 0.008 | 300.21 | 310.953 | Considerable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baguma, G.; Musasizi, A.; Twinomuhwezi, H.; Gonzaga, A.; Nakiguli, C.K.; Onen, P.; Angiro, C.; Okwir, A.; Opio, B.; Otema, T.; et al. Heavy Metal Contamination of Sediments from an Exoreic African Great Lakes’ Shores (Port Bell, Lake Victoria), Uganda. Pollutants 2022, 2, 407-421. https://doi.org/10.3390/pollutants2040027
Baguma G, Musasizi A, Twinomuhwezi H, Gonzaga A, Nakiguli CK, Onen P, Angiro C, Okwir A, Opio B, Otema T, et al. Heavy Metal Contamination of Sediments from an Exoreic African Great Lakes’ Shores (Port Bell, Lake Victoria), Uganda. Pollutants. 2022; 2(4):407-421. https://doi.org/10.3390/pollutants2040027
Chicago/Turabian StyleBaguma, Gabson, Andrew Musasizi, Hannington Twinomuhwezi, Allan Gonzaga, Caroline K. Nakiguli, Patrick Onen, Christopher Angiro, Augastine Okwir, Boniface Opio, Thomas Otema, and et al. 2022. "Heavy Metal Contamination of Sediments from an Exoreic African Great Lakes’ Shores (Port Bell, Lake Victoria), Uganda" Pollutants 2, no. 4: 407-421. https://doi.org/10.3390/pollutants2040027
APA StyleBaguma, G., Musasizi, A., Twinomuhwezi, H., Gonzaga, A., Nakiguli, C. K., Onen, P., Angiro, C., Okwir, A., Opio, B., Otema, T., Ocira, D., Byaruhanga, I., Nirigiyimana, E., & Omara, T. (2022). Heavy Metal Contamination of Sediments from an Exoreic African Great Lakes’ Shores (Port Bell, Lake Victoria), Uganda. Pollutants, 2(4), 407-421. https://doi.org/10.3390/pollutants2040027