A Comprehensive Analysis of Risk Assessment of Particulate Matter in Five Health Centers in Akure, Nigeria
Abstract
:1. Introduction
1.1. Research Questions
- What are the levels of indoor particulate matter in the air within the selected health centers in Akure?
- How do these levels compare to established air quality standards and guidelines?
- What are the health risks associated with elevated particulate matter levels in healthcare settings?
- Are there variations in particulate matter concentrations among the different health centers?
1.2. Objectives
- To measure and quantify particulate matter concentrations in the air within PHCs.
- To compare the measured particulate matter levels with national and international air quality standards.
- To assess the health risks posed by elevated particulate matter levels in healthcare settings.
- To identify variations in particulate matter concentrations among the different health centers.
- To provide recommendations for mitigating risks and improving air quality within these healthcare facilities
1.3. Literature Review
2. Materials and Methods
2.1. Study Site and Monitoring Methodology
2.2. Toxicity Assessment
2.3. Health Risk Assessment (HRA)
2.3.1. Health Risk Assessment Methodology for Short-Term Effect of PM10
2.3.2. Health Risk Assessment Methodology for Short-Term Effect of PM2.5
3. Results
PM10 | PM2.5 |
Arakale (1.70): Moderate toxicity potential. | Arakale (4.42): High toxicity potential |
FECA (0.57): Relatively low toxicity potential. | FECA (1.30): Moderate toxicity potential. |
Iju (0.89): Moderate toxicity potential. | Iju (2.46): Moderate to high toxicity potential. |
Oba-Ile (1.80): Moderate to high toxicity potential. | Oba-Ile (4.56): High toxicity potential. |
Owode (1.92): High toxicity potential. | Owode (4.92): High toxicity potential. |
4. Conclusions
5. Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- Crouse, D.L.; Peters, P.A.; Van Donkelaar, A.; Goldberg, M.S.; Villeneuve, P.J.; Brion, O.; Khan, S.; Atari, D.O.; Jerrett, M.; Pope, C.A., III; et al. Risk of nonaccidental and cardiovascular mortality in relation to long-term exposure to low concentrations of fine particulate matter: A Canadian national-level cohort study. Environ. Health Perspect. 2012, 120, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, S.; Hawken, S.; Ôunpuu, S.; Dans, T.; Avezum, A.; Lanas, F.; McQueen, M.; Budaj, A.; Pais, P.; Varigos, J.; et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. Lancet 2014, 364, 937–952. [Google Scholar] [CrossRef] [PubMed]
- Brauer, M.; Lencar, C.; Tamburic, L.; Koehoorn, M.; Demers, P.; Karr, C. A cohort study of traffic-related air pollution impacts on birth outcomes. Environ. Health Perspect. 2008, 116, 680–686. [Google Scholar] [CrossRef]
- Paital, B. Nurture to nature via COVID-19, a self-regenerating environmental strategy of environment in global context. Sci. Total Environ. 2020, 729, 139088. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The Lancet Commission on pollution and health. Lancet 2017, 391, 462–512. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Burnett, R.T.; Kwong, J.C.; Villeneuve, P.J.; Goldberg, M.S.; Brook, R.D.; van Donkelaar, A.; Jerrett, M.; Martin, R.V.; Kopp, A.; et al. Spatial association between ambient fine particulate matter and incident hypertension. Circulation 2017, 135, 379–387. [Google Scholar] [CrossRef]
- World Health Organization. Ambient (Outdoor) Air Quality and Health. 2018. Available online: https://www.who.int/en/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 10 April 2022).
- Allen, J.G.; Ibrahim, A.M.; Indoor Environmental Quality Global Alliance. Indoor environmental quality and occupant satisfaction in green-certified buildings. Build. Environ. 2019, 149, 362–370. [Google Scholar]
- Mendell, M.J.; Mirer, A.G.; Cheung, K.; Tong, M.; Douwes, J. Respiratory and allergic health effects of dampness, mold, and dampness-related agents: A review of the epidemiologic evidence. Environ. Health Perspect. 2018, 119, 748–756. [Google Scholar] [CrossRef]
- Kelly, F.J.; Fussell, J.C. Air pollution and public health: Emerging hazards and improved understanding of risk. Environ. Geochem. Health 2017, 39, 593–605. [Google Scholar] [CrossRef]
- Shah, A.S.V.; Langrish, J.P.; Nair, H.; McAllister, D.A.; Hunter, A.L.; Donaldson, K.; Newby, D.E.; Mills, N.L. Global association of air pollution and heart failure: A systematic review and meta-analysis. Lancet 2015, 3, e713–e725. [Google Scholar] [CrossRef] [PubMed]
- Persily, A. Challenges in developing ventilation and indoor air quality standards. Indoor Air 2017, 27, 8–19. [Google Scholar]
- Hoek, G.; Krishnan, R.M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J.D. Long-term air pollution exposure and cardio- respiratory mortality: A review. Environ. Health 2013, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., III; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease. An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [PubMed]
- Hamra, G.B.; Guha, N.; Cohen, A.; Laden, F.; Raaschou-Nielsen, O.; Samet, J.M.; Vineis, P.; Forastiere, F.; Saldiva, P.; Yorifuji, T.; et al. Outdoor particulate matter exposure and lung cancer: A systematic review and meta-analysis. Environ. Health Perspect. 2014, 122, 906–911. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA Net. 2002, 287, 1132–1141. [Google Scholar] [CrossRef]
- Chen, P.; Bornhorst, J.; Aschner, M.; Metallo, C.M. A critical review of mercury as a global pollutant with a particular emphasis on the epigenetic dynamics of bioaccumulation. Environ. Epigenet. 2018, 4, dvy022. [Google Scholar]
- Yang, Y.; Chang, C.Y.; Sun, C.W.; Chao, M.R.; Lai, C.C. Pesticide exposure and lung cancer risk: A case–control study in non-smoking men. Sci. Rep. 2019, 9, 1–8. [Google Scholar]
- Lee, S.C.; Chiu, M.Y.; Ho, K.F. Evaluation of particulate matter (PM)2.5, PM10, and PM2.5/PM10 ratio in Hong Kong: A 17-year monitoring study. Environ. Pollut. 2019, 247, 874–883. [Google Scholar]
- Zhang, Y.; Mo, J.; Li, J. Temporal variations of PM2.5, PM10, and PM2.5/PM10 ratios in the Yangtze River Delta and their relationship with synoptic meteorology and boundary-layer structures. Atmos. Res. 2020, 236, 104837. [Google Scholar]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Ayodele, C.; Fakinle, B.; Jimoda, L.; Sonibare, J. Investigation on the ambient air quality in a hospital environment. Cogent Environ. Sci. 2016, 2, 1215281. [Google Scholar] [CrossRef]
- Chamseddine, A.; Alameddine, I.; Hatzopoulou, M.; El-Fadel, M. Seasonal variation of air quality in hospitals with indoor–outdoor correlations. J. Affect. Disord. 2019, 148, 689–700. [Google Scholar] [CrossRef]
- Ostro, B. Outdoor Air Pollution—Assessing the Environmental Burden of Disease at National and Local Levels; Environmental Burden of Disease Series No. 5; World Health Organization: Geneva, Switzerland, 2004.
- Bodor, K.; Szép, R.; Bodor, Z. The human health risk assessment of particulate air pollution (PM2.5 and PM10) in Romania. Toxicol. Rep. 2022, 9, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Abulude, F.O.; Oluwagbayide, S.D.; Akinnusotu, A.; Kenni, A.M.; Adamu, A. Indoor Air Quality: Assessment of Particulate Matter and Non-Cancerous Inhalation Health Risk in Nigeria (29 May 2023). Available online: https://ssrn.com/abstract=4462384 (accessed on 10 April 2022). [CrossRef]
- Shittu, A.I.; Njoku, K.L.; Adesuyi, A.A. Indoor Air Quality and Microbial Assessment of the Nigerian University Campus in Lagos, Nigeria. ТЕХНОЛОГІЇ ЗАХИСТУ ДОВКІЛЛЯ. Екoлoгічна безпека та збалансoване ресурсoкoристуванн. UDC 502/504. Ecol. Saf. Balanc. Use Resour. 2019. [Google Scholar] [CrossRef]
- Otuu, F.; Okwuosa, C.; Maduka, I.; Ogbodo, S.; Shuneba, I.; Nkechi, H.; Shu, E.N. Indoor Air Quality, Cell Features and Lifestyle Characteristics: Implications on the Prevalence of Some Respiratory Tract Diseases and Symptoms among Inmates of Enugu Prison, Nigeria. Adv. Clin. Toxicol. 2019, 4, 000163. [Google Scholar]
- Afolabi, A.O.; Arome, A.; Akinbo, F.T. Empirical Study on Sick Building Syndrome from Indoor Pollution in Nigeria. Open Access Maced. J. Med. Sci. 2020, 8, 395–404. [Google Scholar] [CrossRef]
- Anjorin, O.F.; Imoh, L.C.; Uhunmwangho, C. Evaluation of Air Quality Indices of Selected Public Kitchens and Possible Health Consequences. Iran. J. Energy Environ. 2020, 13, 408–416. [Google Scholar] [CrossRef]
- Ibeneme, S.C.; Ativie, R.N.; Ibeneme, G.C.; Myezwa, H.; Ezuma, A.D.; Nnamani, A.; Ezeofor, S.; Nwankwo, M.J.; Ettu, T.U.; Nwosu, A.O.; et al. Evidence of seasonal changes in airborne particulate matter concentration and occupation-specific variations in pulmonary function and haematological parameters among some workers in Enugu Southeast Nigeria: A randomized cross-sectional observational study. Arch. Public Health 2022, 80, 213. [Google Scholar] [CrossRef]
- WHO Global Air Quality Guidelines. Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021.
- National Assembly of the Federal Republic of Nigeria. National Environmental Standards and Regulations Enforcement Agency (Establishment) (Amended) ACT; Regulation Control; National Environmental (Air Quality Control); National Assembly of the Federal Republic of Nigeria: Abuja, Nigeria, 2018.
- Abulude, F.O.; Oluwagbayide, S.D.; Akinnusotu, A.; Elemide, O.A.; Gbotoso, A.O.; Ademilua, S.O.; Abulude, I.A. Indoor Air Quality in a Tertiary Institution: The Case of Federal College of Agriculture, Akure, Nigeria. Aerosol Sci. Eng. 2023, 1–12. [Google Scholar] [CrossRef]
- Tronville, P.; Rivers, R. Developing parameters for multi-mode ambient air models including the nanometer mode. J. Phys. Conf. Ser. 2017, 838, 012036. [Google Scholar] [CrossRef]
- Chauhan, P.K.; Kumar, A.; Pratap, V.; Singh, A.K. Seasonal characteristics of PM1, PM2.5, and PM10 over Varanasi during 2019–2020. Front. Sustain. Cities 2022, 4, 909351. [Google Scholar] [CrossRef]
- Bathmanabhan, S.; Saragur Madanayak, S.N. Analysis and interpretation of particulate matter—PM10, PM2.5 and PM1 emissions from the heterogeneous traffic near an urban roadway. Atmos. Pollut. Res. 2010, 1, 184–194. [Google Scholar]
- Emekwuru, N.; Ejohwomu, O. Temperature, Humidity and Air Pollution Relationships during a Period of Rainy and Dry Seasons in Lagos, West Africa. Climate 2023, 11, 113. [Google Scholar] [CrossRef]
- Pérez, N.; Pey, J.; Querol, X.; Alastuey, A.; López, J.M.; Viana, M. Partitioning of major and trace components in PM10–PM2.5–PM1 at an urban site in Southern Europe. Atmos. Environ. 2008, 42, 1677–1691. [Google Scholar] [CrossRef]
- Noordzij, M.; Van Diepen, M.; Caskey, F.C.; Jager, K.J. Relative risk versus absolute risk: One cannot be interpreted without the other. Nephrol. Dial. Transplant. 2017, 32, ii13–ii18. [Google Scholar] [CrossRef] [PubMed]
- Gilardi, L.; Marconcini, M.; Metz-Marconcini, A.; Esch, T.; Erbertseder, T. Long-term exposure and health risk assessment from air pollution: Impact of regional scale mobility. Int. J. Health Geogr. 2023, 22, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Tripepi, G.; Jager, K.; Dekker, F.; Wanner, C.; Zoccali, C. Measures of effect: Relative risks, odds ratios, risk difference, and ‘number needed to treat’. Kidney Int. 2007, 72, 789–791. [Google Scholar] [CrossRef]
- Hamanaka, R.B.; Mutlu, G.M. Particulate Matter Air Pollution: Effects on the Cardiovascular System. Front. Endocrinol. 2018, 9, 680. [Google Scholar] [CrossRef]
- Turner, M.C.; Krewski, D.; Diver, W.R.; Pope, I.I.I.C.A.; Burnett, R.T.; Jerrett, M.; Marshall, J.D.; Gapstur, S.M. Ambient air pollution and cancer mortality in the Cancer Prevention Study II. Environ. Health Perspect. 2011, 119, 813–820. [Google Scholar] [CrossRef]
- Dockery, D.W.; Pope, C.A., III; Xu, X.; Spengler, J.D.; Ware, J.H.; Fay, M.E.; Ferris, B.G., Jr.; Speizer, F.E. An association between air pollution and mortality in six U.S. Cities. N. Engl. J. Med. 1993, 329, 1753–1759. [Google Scholar] [CrossRef]
- Kheirbek, I.; Wheeler, K.; Walters, S.; Kass, D.; Matte, T. PM2.5 and ozone health impacts and disparities in New York City: Sensitivity to spatial and temporal resolution. Air Qual. Atmos. Health 2013, 6, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Yorifuji, T.; Bae, S.; Kashima, S.; Tsuda, T.; Doi, H.; Honda, Y.; Kim, H.; Hong, Y.-C. Health Impact Assessment of PM10 and PM2.5 in 27 Southeast and East Asian Cities. J. Occup. Environ. Med. 2015, 57, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Suriano, D.; Prato, M.; Penza, M. Air Quality Monitoring in a Near-City Industrial Zone by Low-Cost Sensor Technologies: A Case Study. Eng. Proc. 2023, 48, 26. [Google Scholar] [CrossRef]
- Suriano, D.; Prato, M. An Investigation on the Possible Application Areas of Low-Cost PM Sensors for Air Quality Monitoring. Sensors 2023, 23, 3976. [Google Scholar] [CrossRef]
Location | Local Government Area | Coordinates | |
---|---|---|---|
Arakale | Akure South | Lat: 7.251133° | Long: 5.193367° |
FECA | Akure South | Lat: 7.263321° | Long: 5.220044° |
Iju | Akure North | Lat: 7.391430° | Long: 5.259698° |
Oba-Ile | Akure North | Lat: 7.261411° | Long: 5.193367° |
Owode | Akure North | Lat: 7.161718° | Long: 5.173209° |
Parameter | PM1.0 | PM2.5 | PM10 | PM1.0 | PM2.5 | PM10 | PM1.0 | PM2.5 | PM10 |
---|---|---|---|---|---|---|---|---|---|
Arakale | Iju | Oba-Ile | |||||||
Mean | 28.15 | 73.00 | 85.21 | 17.75 | 35.58 | 37.40 | 19.72 | 34.59 | 38.40 |
StD | 10.66 | 27.94 | 33.00 | 5.63 | 14.68 | 14.72 | 7.66 | 13.67 | 12.71 |
CoefVar (%) | 37.87 | 38.28 | 38.70 | 31.73 | 34.52 | 39.37 | 31.73 | 39.53 | 38.34 |
Minimum | 2.44 | 7.39 | 9.20 | 6.16 | 11.46 | 11.67 | 7.14 | 10.46 | 12.63 |
Q1 | 24.30 | 62.64 | 86.78 | 13.67 | 27.06 | 28.09 | 14.69 | 26.06 | 25.10 |
Q3 | 33.15 | 84.83 | 99.91 | 21.72 | 42.55 | 45.13 | 22.71 | 41.55 | 43.12 |
Maximum | 106.59 | 303.67 | 357.08 | 56.38 | 223.90 | 240.42 | 54.37 | 224.90 | 244.43 |
Skewness | 0.38 | 0.81 | 0.87 | 0.42 | 4.10 | 3.93 | 0.427 | 4.06 | 3.94 |
Kurtosis | 4.29 | 6.32 | 6.18 | 2.82 | 50.44 | 47.87 | 2.87 | 50.14 | 47.63 |
Owode | FECA | ||||||||
Mean | 16.18 | 47.62 | 56.52 | 21.13 | 25.41 | 24.46 | |||
StD | 19.86 | 58.92 | 66.88 | 9.77 | 11.01 | 11.03 | |||
CoefVar (%) | 122.72 | 123.75 | 118.34 | 46.23 | 43.32 | 43.33 | |||
Minimum | 2.54 | 10.57 | 14.09 | 9.02 | 11.10 | 11.10 | |||
Q1 | 6.61 | 22.92 | 28.59 | 14.47 | 18.07 | 18.14 | |||
Q3 | 19.38 | 53.04 | 62.52 | 26.57 | 32.13 | 32.16 | |||
Maximum | 184.61 | 613.80 | 701.68 | 72.43 | 83.44 | 83.56 | |||
Skewness | 4.82 | 5.57 | 5.71 | 1.81 | 1.71 | 1.70 | |||
Kurtosis | 28.93 | 47.62 | 38.98 | 4.42 | 4.07 | 4.04 |
Serial | City | PM1.0 (µg/m3) | PM2.5 (µg/m3) | PM10 (µg/m3) | References |
---|---|---|---|---|---|
1 | WHO | - | 15 | 45 | WHO [34] |
2 | NESREA | 40 | 150 | NESREA [35] | |
3 | Akure | 16.18–28.15 | 25.41–73.00 | 24.46–85.21 | Our Study |
4 | Akure | 12.3 | 17.29 | 18.89 | Abulude et al. [28] |
5 | Lagos | - | 4–26 | 8–36 | Shittu et al. [29] |
6 | Enugu | 71.03 | 89.00 | 107.40 | Otuu et al. [30] |
7 | Zaria | - | 60.26–75.57 | 98.43–101.06 | Afolabi et al. [31] |
8 | Jos | - | 74 | 138 | Anjorin et al. [32] |
9 | Enugu | - | 30.33–72.92 | 244–541.17 | Ibeneme et al. [33] |
RR (All-Cause Mortality) | RR (Cardiopulmonary Mortality) | RR (Lung Cancer) | AF (Cardiopulmonary Mortality) | AF (Lung Cancer) | ER (Cardiopulmonary Mortality) | ER (Lung Cancer) | |
---|---|---|---|---|---|---|---|
Arakale | 1.06 ± 0.05 | 2.70 ± 1.84 | 4.04 ± 2.76 | 12.81 ± 0.72 | 15.19 ± 0.03 | 17.00 ± 1.84 | 30.41 ± 2.78 |
FECA | 1.01 ± 0.01 | 0.861 ± 0.38 | 1.289 ± 0.57 | 11.03 ± 0.31 | 10.03 ± 0.012 | 19.04 ± 0.38 | 20.88 ± 0.57 |
Iju | 1.02 ± 0.01 | 1.528 ± 7.25 | 2.201 ± 0.28 | 19.22 ± 0.04 | 15.38 ± 0.07 | 14.728 ± 7.25 | 12.01 ± 0.28 |
Oba-Ile | 1.06 ± 0.05 | 2.707 ± 1.62 | 4.051 ± 2.43 | 15.71 ± 0.15 | 17.13 ± 010 | 17.07 ± 1.62 | 30.50 ± 2.43 |
Owode | 1.06 ± 0.12 | 2.68 ± 4.22 | 4.007 ± 6.32 | 12.38 ± 0.36 | 14.91 ± 0.24 | 18.10 ± 1.62 | 30.07 ± 6.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abulude, F.O.; Oluwagbayide, S.D.; Akinnusotu, A.; Arifalo, K.M.; Adamu, A.; Kenni, A.M. A Comprehensive Analysis of Risk Assessment of Particulate Matter in Five Health Centers in Akure, Nigeria. Pollutants 2024, 4, 72-90. https://doi.org/10.3390/pollutants4010006
Abulude FO, Oluwagbayide SD, Akinnusotu A, Arifalo KM, Adamu A, Kenni AM. A Comprehensive Analysis of Risk Assessment of Particulate Matter in Five Health Centers in Akure, Nigeria. Pollutants. 2024; 4(1):72-90. https://doi.org/10.3390/pollutants4010006
Chicago/Turabian StyleAbulude, Francis Olawale, Samuel Dare Oluwagbayide, Akinyinka Akinnusotu, Kikelomo Mabinuola Arifalo, Ademola Adamu, and Amoke Monisola Kenni. 2024. "A Comprehensive Analysis of Risk Assessment of Particulate Matter in Five Health Centers in Akure, Nigeria" Pollutants 4, no. 1: 72-90. https://doi.org/10.3390/pollutants4010006
APA StyleAbulude, F. O., Oluwagbayide, S. D., Akinnusotu, A., Arifalo, K. M., Adamu, A., & Kenni, A. M. (2024). A Comprehensive Analysis of Risk Assessment of Particulate Matter in Five Health Centers in Akure, Nigeria. Pollutants, 4(1), 72-90. https://doi.org/10.3390/pollutants4010006