Extreme Weather Events and Pathogen Pollution Fuel Infectious Diseases: The 2024 Flood-Related Leptospirosis Outbreak in Southern Brazil and Other Red Lights
Abstract
:1. Introduction
2. Methodological Notes
3. Flood-Related Infectious Disease Outbreaks in Different Countries: A Brief Review
4. Climate Change and Extreme Weather Events Already Favor Multiple Pathogens and ‘Superbugs’
4.1. The 2024 Flood-Related Leptospirosis Outbreak in Rio Grande Do Sul State
4.2. Other Examples of Climate Change-Related Health Problems
5. Control of ‘Pathogen Pollution’ Is Urgent
6. Key Message
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ellwanger, J.H.; Chies, J.A.B. Zoonotic spillover: Understanding basic aspects for better prevention. Genet. Mol. Biol. 2021, 44 (Suppl. S1), e20200355. [Google Scholar] [CrossRef] [PubMed]
- Ormsby, M.J.; Woodford, L.; Quilliam, R.S. Can plastic pollution drive the emergence and dissemination of novel zoonotic diseases? Environ. Res. 2024, 246, 118172. [Google Scholar] [CrossRef] [PubMed]
- Plowright, R.K.; Ahmed, A.N.; Coulson, T.; Crowther, T.W.; Ejotre, I.; Faust, C.L.; Frick, W.F.; Hudson, P.J.; Kingston, T.; Nameer, P.O.; et al. Ecological countermeasures to prevent pathogen spillover and subsequent pandemics. Nat. Commun. 2024, 15, 2577. [Google Scholar] [CrossRef] [PubMed]
- Rekadwad, B.N. The reverse zoonosis transfer cycle from the human-animal-plant-environment interface: How antibiotic-resistant bacteria from humans threaten the environment and fuel the rise of superbugs. Med. Hypotheses 2024, 186, 111334. [Google Scholar] [CrossRef]
- Martin, L.B.; Hopkins, W.A.; Mydlarz, L.D.; Rohr, J.R. The effects of anthropogenic global changes on immune functions and disease resistance. Ann. N. Y. Acad. Sci. 2010, 1195, 129–148. [Google Scholar] [CrossRef]
- Plowright, R.K.; Reaser, J.K.; Locke, H.; Woodley, S.J.; Patz, J.A.; Becker, D.J.; Oppler, G.; Hudson, P.J.; Tabor, G.M. Land use-induced spillover: A call to action to safeguard environmental, animal, and human health. Lancet Planet Health 2021, 5, e237–e245. [Google Scholar] [CrossRef] [PubMed]
- Kempf, F.; La Ragione, R.; Chirullo, B.; Schouler, C.; Velge, P. Super Shedding in Enteric Pathogens: A Review. Microorganisms 2022, 10, 2101. [Google Scholar] [CrossRef]
- Ellwanger, J.H.; Fearnside, P.M.; Ziliotto, M.; Valverde-Villegas, J.M.; Veiga, A.B.G.; Vieira, G.F.; Bach, E.; Cardoso, J.C.; Müller, N.F.D.; Lopes, G.; et al. Synthesizing the connections between environmental disturbances and zoonotic spillover. An. Acad. Bras. Cienc. 2022, 94 (Suppl. S3), e20211530. [Google Scholar] [CrossRef]
- de Souza, W.M.; Weaver, S.C. Effects of climate change and human activities on vector-borne diseases. Nat. Rev. Microbiol. 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Cann, K.F.; Thomas, D.R.; Salmon, R.L.; Wyn-Jones, A.P.; Kay, D. Extreme water-related weather events and waterborne disease. Epidemiol. Infect. 2013, 141, 671–686. [Google Scholar] [CrossRef]
- Benedict, K.; Park, B.J. Invasive fungal infections after natural disasters. Emerg. Infect. Dis. 2014, 20, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Shokri, A.; Sabzevari, S.; Hashemi, S.A. Impacts of flood on health of Iranian population: Infectious diseases with an emphasis on parasitic infections. Parasite Epidemiol. Control 2020, 9, e00144. [Google Scholar] [CrossRef]
- Seidel, D.; Wurster, S.; Jenks, J.D.; Sati, H.; Gangneux, J.P.; Egger, M.; Alastruey-Izquierdo, A.; Ford, N.P.; Chowdhary, A.; Sprute, R.; et al. Impact of climate change and natural disasters on fungal infections. Lancet Microbe 2024, 5, e594–e605. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Yu, P.; Abramson, M.J.; Johnston, F.H.; Samet, J.M.; Bell, M.L.; Haines, A.; Ebi, K.L.; Li, S.; Guo, Y. Wildfires, Global Climate Change, and Human Health. N. Engl. J. Med. 2020, 383, 2173–2181. [Google Scholar] [CrossRef] [PubMed]
- Romanello, M.; Di Napoli, C.; Drummond, P.; Green, C.; Kennard, H.; Lampard, P.; Scamman, D.; Arnell, N.; Ayeb-Karlsson, S.; Ford, L.B.; et al. The 2022 report of the Lancet Countdown on health and climate change: Health at the mercy of fossil fuels. Lancet 2022, 400, 1619–1654. [Google Scholar] [CrossRef] [PubMed]
- WHO—World Health Organization. Climate Change. Available online: https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health (accessed on 18 June 2024).
- National Library of Medicine, National Center for Biotechnology Information. PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/ (accessed on 16 August 2024).
- Google Scholar. Available online: https://scholar.google.com/ (accessed on 16 August 2024).
- Brasil, Ministério da Saúde. Leptospirose, Situação Epidemiológica. Available online: https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/l/leptospirose/situacao-epidemiologica (accessed on 20 August 2024).
- Secretaria da Saúde; Governo do Estado do Rio Grande do Sul. Leptospirose. Available online: https://saude.rs.gov.br/leptospirose (accessed on 20 August 2024).
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Chang. 2013, 3, 816–821. [Google Scholar] [CrossRef]
- De la Paix, M.J.; Lanhai, L.; Xi, C.; Ahmed, S.; Varenyam, A. Soil degradation and altered flood risk as a consequence of deforestation. Land Degrad. Dev. 2013, 24, 478–485. [Google Scholar] [CrossRef]
- Tingsanchali, T. Urban flood disaster management. Procedia Eng. 2012, 32, 25–37. [Google Scholar] [CrossRef]
- Du, W.; FitzGerald, G.J.; Clark, M.; Hou, X.Y. Health impacts of floods. Prehosp. Disaster Med. 2010, 25, 265–272. [Google Scholar] [CrossRef]
- Fekete, A.; Sandholz, S. Here Comes the Flood, but Not Failure? Lessons to Learn after the Heavy Rain and Pluvial Floods in Germany 2021. Water 2021, 13, 3016. [Google Scholar] [CrossRef]
- Barredo, J.I. Major flood disasters in Europe: 1950–2005. Nat. Hazards 2007, 42, 125–148. [Google Scholar] [CrossRef]
- Agampodi, S.B.; Dahanayaka, N.J.; Bandaranayaka, A.K.; Perera, M.; Priyankara, S.; Weerawansa, P.; Matthias, M.A.; Vinetz, J.M. Regional differences of leptospirosis in Sri Lanka: Observations from a flood-associated outbreak in 2011. PLoS Negl. Trop. Dis. 2014, 8, e2626. [Google Scholar] [CrossRef] [PubMed]
- Dura, G.; Pándics, T.; Kádár, M.; Krisztalovics, K.; Kiss, Z.; Bodnár, J.; Asztalos, A.; Papp, E. Environmental health aspects of drinking water-borne outbreak due to karst flooding: Case study. J. Water Health 2010, 8, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Sur, D.; Dutta, P.; Nair, G.B.; Bhattacharya, S.K. Severe cholera outbreak following floods in a northern district of West Bengal. Indian J. Med. Res. 2000, 112, 178–182. [Google Scholar]
- Tibuhwa, D.D. Moulds Menaces in Flood Ravaged Homes: A Case Study of Dar Es Salaam City Tanzania. J. Biol. Life Sci. 2016, 7, 110–121. [Google Scholar] [CrossRef]
- Davies, B.W.; Smith, J.M.; Hink, E.M.; Durairaj, V.D. Increased Incidence of Rhino-Orbital-Cerebral Mucormycosis After Colorado Flooding. Ophthalmic Plast. Reconstr. Surg. 2017, 33 (Suppl. S1), S148–S151. [Google Scholar] [CrossRef]
- Toda, M.; Williams, S.; Jackson, B.R.; Wurster, S.; Serpa, J.A.; Nigo, M.; Grimes, C.Z.; Atmar, R.L.; Chiller, T.M.; Ostrosky-Zeichner, L.; et al. Invasive Mold Infections Following Hurricane Harvey-Houston, Texas. Open Forum Infect. Dis. 2023, 10, ofad093. [Google Scholar] [CrossRef]
- Gertler, M.; Dürr, M.; Renner, P.; Poppert, S.; Askar, M.; Breidenbach, J.; Frank, C.; Preußel, K.; Schielke, A.; Werber, D.; et al. Outbreak of Cryptosporidium hominis following river flooding in the city of Halle (Saale), Germany, August 2013. BMC Infect. Dis. 2015, 15, 88. [Google Scholar] [CrossRef]
- Elsanousi, Y.E.A.; Elmahi, A.S.; Pereira, I.; Debacker, M. Impact of the 2013 Floods on the Incidence of Malaria in Almanagil Locality, Gezira State, Sudan. PLoS Curr. 2018, 10, ecurrents.dis.8267b8917b47bc12ff3a712fe4589fe1. [Google Scholar] [CrossRef]
- Meier, P.A.; Mathers, W.D.; Sutphin, J.E.; Folberg, R.; Hwang, T.; Wenzel, R.P. An epidemic of presumed Acanthamoeba keratitis that followed regional flooding. Results of a case-control investigation. Arch. Ophthalmol. 1998, 116, 1090–1094. [Google Scholar] [CrossRef]
- Caillouët, K.A.; Michaels, S.R.; Xiong, X.; Foppa, I.; Wesson, D.M. Increase in West Nile neuroinvasive disease after Hurricane Katrina. Emerg. Infect. Dis. 2008, 14, 804–807. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Juyal, D.; Sharma, M.; Kotian, S.; Negi, V.; Sharma, N. An outbreak of hepatitis A virus among children in a flood rescue camp: A post-disaster catastrophe. Indian J. Med. Microbiol. 2016, 34, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Yee, E.L.; Palacio, H.; Atmar, R.L.; Shah, U.; Kilborn, C.; Faul, M.; Gavagan, T.E.; Feigin, R.D.; Versalovic, J.; Neill, F.H.; et al. Widespread outbreak of norovirus gastroenteritis among evacuees of Hurricane Katrina residing in a large “megashelter” in Houston, Texas: Lessons learned for prevention. Clin. Infect. Dis. 2007, 44, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
- Paterson, D.L.; Wright, H.; Harris, P.N.A. Health Risks of Flood Disasters. Clin. Infect. Dis. 2018, 67, 1450–1454. [Google Scholar] [CrossRef]
- Saatchi, M.; Khankeh, H.R.; Shojafard, J.; Barzanji, A.; Ranjbar, M.; Nazari, N.; Mahmodi, M.A.; Ahmadi, S.; Farrokhi, M. Communicable diseases outbreaks after natural disasters: A systematic scoping review for incidence, risk factors and recommendations. Prog. Disaster Sci. 2024, 23, 100334. [Google Scholar] [CrossRef]
- Suhr, F.; Steinert, J.I. Epidemiology of floods in sub-Saharan Africa: A systematic review of health outcomes. BMC Public Health 2022, 22, 268. [Google Scholar] [CrossRef]
- Precha, N.; Kliengchuay, W.; Woo, C.; Yamamoto, N.; Tantrakarnapa, K. Fungal Assemblages on Indoor Surfaces with Visible Mold Growth in Homes after the 2016 Flood Disaster in Thailand. Appl. Sci. 2020, 10, 5322. [Google Scholar] [CrossRef]
- Coalson, J.E.; Anderson, E.J.; Santos, E.M.; Madera Garcia, V.; Romine, J.K.; Dominguez, B.; Richard, D.M.; Little, A.C.; Hayden, M.H.; Ernst, K.C. The Complex Epidemiological Relationship between Flooding Events and Human Outbreaks of Mosquito-Borne Diseases: A Scoping Review. Environ. Health Perspect. 2021, 129, 96002. [Google Scholar] [CrossRef]
- Salam, A.; Wireko, A.A.; Jiffry, R.; Ng, J.C.; Patel, H.; Zahid, M.J.; Mehta, A.; Huang, H.; Abdul-Rahman, T.; Isik, A. The impact of natural disasters on healthcare and surgical services in low- and middle-income countries. Ann. Med. Surg. 2023, 85, 3774–3777. [Google Scholar] [CrossRef]
- Mwachui, M.A.; Crump, L.; Hartskeerl, R.; Zinsstag, J.; Hattendorf, J. Environmental and Behavioural Determinants of Leptospirosis Transmission: A Systematic Review. PLoS Negl. Trop Dis. 2015, 9, e0003843. [Google Scholar] [CrossRef]
- Naing, C.; Reid, S.A.; Aye, S.N.; Htet, N.H.; Ambu, S. Risk factors for human leptospirosis following flooding: A meta-analysis of observational studies. PLoS ONE 2019, 14, e0217643. [Google Scholar] [CrossRef]
- Brennan, T.; Cole, G.; Stephens, B. Report to the U.S. Environmental Protection Agency on Guidance Documents to Safely Clean, Decontaminate, and Reoccupy Flood-Damaged Houses; U.S. Environmental Protection Agency: Washington, DC, USA, 2018.
- Martins-Filho, P.R.; Croda, J.; Araújo, A.A.S.; Correia, D.; Quintans-Júnior, L.J. Catastrophic Floods in Rio Grande do Sul, Brazil: The Need for Public Health Responses to Potential Infectious Disease Outbreaks. Rev. Soc. Bras. Med. Trop. 2024, 57, e006032024. [Google Scholar] [CrossRef]
- Zhong, R.; Andreoni, M. Deadly Floods in Brazil Were Worsened by Climate Change, Study Finds. The New York Times. Available online: https://www.nytimes.com/2024/06/03/climate/brazil-floods-climate-change.html (accessed on 22 July 2024).
- Secretaria da Comunicação; Governo do Estado do Rio Grande do Sul. Balanço das enchentes no RS-10/7, 11h, Situação nos Municípios. Available online: https://sosenchentes.rs.gov.br/situacao-nos-municipios (accessed on 20 August 2024).
- Watanabe, M.; Otta, L.A. Valor International, Brazil Floods: Rio Grande do Sul Estimates Losses of R$62bn. Available online: https://valorinternational.globo.com/economy/news/2024/06/10/brazil-floods-rio-grande-do-sul-estimates-losses-of-r62bn.ghtml (accessed on 19 August 2024).
- Machado, G.P. Floods in south Brazil: More than an environmental crisis. Lancet 2024, 404, 24–25. [Google Scholar] [CrossRef]
- Rodrigues, A. Mais de 11 mil Animais Afetados pelas Enchentes no RS Foram Resgatados. Agência Brasil. Available online: https://agenciabrasil.ebc.com.br/geral/noticia/2024-05/mais-de-11-mil-animais-afetados-pelas-enchentes-no-rs-foram-resgatados#:~:text=Segundo%20a%20secretaria%20estadual%20do,ilhada%2C%20em%20Canoas%2C%20e%20cujo (accessed on 22 July 2024).
- Bharti, A.R.; Nally, J.E.; Ricaldi, J.N.; Matthias, M.A.; Diaz, M.M.; Lovett, M.A.; Levett, P.N.; Gilman, R.H.; Willig, M.R.; Gotuzzo, E.; et al. Leptospirosis: A zoonotic disease of global importance. Lancet Infect. Dis. 2003, 3, 757–771. [Google Scholar] [CrossRef]
- Goarant, C. Leptospirosis: Risk factors and management challenges in developing countries. Res. Rep. Trop. Med. 2016, 7, 49–62. [Google Scholar] [CrossRef]
- BBC News Brasil. Quais os Sintomas da Leptospirose, que está Deixando Mortos no RS após Inundações. Available online: https://www.bbc.com/portuguese/articles/cx887d4gp23o (accessed on 16 August 2024).
- Faleiro, F. Correio do Povo, Enchente Aumenta Notificações de Leptospirose e Governo do RS muda Estratégia Contra Doença. Available online: https://www.correiodopovo.com.br/not%C3%ADcias/sa%C3%BAde/enchente-aumenta-notifica%C3%A7%C3%B5es-de-leptospirose-e-governo-do-rs-muda-estrat%C3%A9gia-contra-doen%C3%A7a-1.1498556 (accessed on 16 August 2024).
- g1 RS. Sobe para 17 Número de Mortes por Leptospirose Após Cheias no RS. Available online: https://g1.globo.com/rs/rio-grande-do-sul/noticia/2024/06/11/sobe-para-17-numero-de-mortes-por-leptospirose-apos-cheias-no-rs.ghtml (accessed on 16 August 2024).
- Laboissière, P. Agência Brasil, Rio Grande do Sul Confirma 25 Mortes por Leptospirose. Available online: https://agenciabrasil.ebc.com.br/saude/noticia/2024-07/rio-grande-do-sul-confirma-25-mortes-por-leptospirose (accessed on 16 August 2024).
- Sul 21. RS já tem 7 Mortes por Leptospirose Relacionadas às Enchentes. Available online: https://sul21.com.br/noticias/saude/2024/05/rs-ja-tem-7-mortes-por-leptospirose-relacionadas-as-enchentes/ (accessed on 16 August 2024).
- Ferreira, M. Brasil de Fato, Population Organizes to Save Lost Animals from the Flood in Rio Grande do Sul’s Capital City. Available online: https://www.brasildefato.com.br/2024/05/10/population-organize-to-save-lost-animals-from-the-flood-in-rio-grande-do-sul-s-capital-city (accessed on 19 August 2024).
- Wells, I. BBC, Inside the Dangerous Rescue for Brazil Flood Victims. Available online: https://www.bbc.com/news/articles/c103lel2p5yo (accessed on 19 August 2024).
- Pescke, I.K.; Perez, K.J.; de Lara, D.M. Se não agora, quando? Água e saneamento como ODS da Agenda 2030 e a realidade no Rio Grande do Sul (Brasil). Revbea 2022, 17, 433–451. [Google Scholar] [CrossRef]
- Instituto Trata Brasil. Rio Grande do Sul Pouco Evolui no Saneamento Básico e Condições Ainda São Precárias. Available online: https://tratabrasil.org.br/rio-grande-do-sul-pouco-evolui-no-saneamento-basico-e-condicoes-ainda-sao-precarias/ (accessed on 16 August 2024).
- Instituto Trata Brasil. Ranking do Saneamento 2024. Available online: https://tratabrasil.org.br/ranking-do-saneamento-2024/ (accessed on 19 August 2024).
- Ziliotto, M.; Chies, J.A.B.; Ellwanger, J.H. Environmental Sanitation in Porto Alegre City, Brazil: A Basic Step towards Sustainable Development. Sustainability 2024, 16, 2672. [Google Scholar] [CrossRef]
- Ziliotto, M.; Ellwanger, J.H.; Chies, J.A.B. Soil-transmitted parasites and non-pathogenic nematodes in different regions of Porto Alegre city, Brazil: A comparison between winter and summer. Parasitologia 2024, 4, 1–14. [Google Scholar] [CrossRef]
- Casadevall, A.; Kontoyiannis, D.P.; Robert, V. On the emergence of Candida auris: Climate change, azoles, swamps, and birds. mBio 2019, 10, e01397-19. [Google Scholar] [CrossRef]
- Ellwanger, J.H.; Chies, J.A.B. Candida auris emergence as a consequence of climate change: Impacts on Americas and the need to contain greenhouse gas emissions. Lancet Reg. Health Am. 2022, 11, 100250. [Google Scholar] [CrossRef]
- Nnadi, N.E.; Carter, D.A. Climate change and the emergence of fungal pathogens. PLoS Pathog. 2021, 17, e1009503. [Google Scholar] [CrossRef]
- Monapathi, M.E.; Oguegbulu, J.C.; Adogo, L.; Klink, M.; Okoli, B.; Mtunzi, F.; Modise, J.S. Pharmaceutical Pollution: Azole Antifungal Drugs and Resistance of Opportunistic Pathogenic Yeasts in Wastewater and Environmental Water. Appl. Environ. Soil Sci. 2021, 2021, 9985398. [Google Scholar] [CrossRef]
- Ellwanger, J.H.; Chies, J.A.B. Pathogen pollution: Viral diseases associated with poor sanitation in Brazil. Hygiene 2023, 3, 441–449. [Google Scholar] [CrossRef]
- Campos, R.K.; Rossi, S.L.; Tesh, R.B.; Weaver, S.C. Zoonotic mosquito-borne arboviruses: Spillover, spillback, and realistic mitigation strategies. Sci. Transl. Med. 2023, 15, eadj2166. [Google Scholar] [CrossRef]
- Martinez, J.L. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut. 2009, 157, 2893–2902. [Google Scholar] [CrossRef]
- Gothwal, R.; Shashidhar, T. Antibiotic Pollution in the Environment: A Review. Clean–Soil Air Water 2015, 43, 479–489. [Google Scholar] [CrossRef]
- Aminov, R.I. Horizontal gene exchange in environmental microbiota. Front. Microbiol. 2011, 2, 158. [Google Scholar] [CrossRef]
- Larsson, D.G.J.; Flach, C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef]
Pathogen Group | Pathogen | Country | Potential Risk Factors * | Reference |
---|---|---|---|---|
Bacteria | Leptospira kirschneri | Sri Lanka | Water retention in soil; use of buffalo in agriculture; peridomestic animal farming in rural areas | Agampodi et al. [27] |
Campylobacter spp. | Hungary | Contamination of water source due to extreme rainfall events | Dura et al. [28] | |
Vibrio cholerae | India | Overcrowding; nutritional deficiency; lack of personal and domestic hygiene; lack of proper sanitation | Sur et al. [29] | |
Fungi | Aspegillus niger | Tanzania | Damp homes affected by floods (prone to mold growth) | Tibuhwa [30] |
Mucormycetes | United States | Widespread environmental exposure resulted in the infection of susceptible individuals | Davies et al. [31] | |
Invasive mold infections | United States | Environment suitable for mold growth | Toda et al. [32] | |
Parasites (protozoa) | Cryptosporidium hominis | Germany | Exposure of children in areas affected by flood waters (e.g., playgrounds, river beach) | Gertler et al. [33] |
Plasmodium spp. | Sudan | Changes in habitat caused by floods resulting in the formation of new breeding sites for Anopheles mosquitoes | Elsanousi et al. [34] | |
Acanthamoeba | United States | Keratitis epidemic caused by contact with contaminated flood water | Meier et al. [35] | |
Viruses | West Nile virus | United States | Increased human exposure to mosquitoes and emergence of new habitats suitable for mosquito development | Caillouët et al. [36] |
Hepatitis A virus | India | Overcrowded rescue camp; poor hygienic condition; contaminated water source | Pal et al. [37] | |
Norovirus | United States | Lack of proper sanitation; crowded shelters | Yee et al. [38] |
Year | Cases under Investigation | Confirmed Cases | Registered Deaths |
---|---|---|---|
2024 | 2844 | 788 | 26 *** |
2023 | - | 477 | 25 |
2022 | - | 280 | 16 |
2021 | - | 194 | 15 |
2020 | - | 214 | 7 |
2019 | - | 698 | 28 |
2018 | - | 448 | 20 |
2017 | - | 493 | 20 |
2016 | - | 409 | 17 |
2015 | - | 523 | 33 |
2014 | - | 481 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziliotto, M.; Chies, J.A.B.; Ellwanger, J.H. Extreme Weather Events and Pathogen Pollution Fuel Infectious Diseases: The 2024 Flood-Related Leptospirosis Outbreak in Southern Brazil and Other Red Lights. Pollutants 2024, 4, 424-433. https://doi.org/10.3390/pollutants4030028
Ziliotto M, Chies JAB, Ellwanger JH. Extreme Weather Events and Pathogen Pollution Fuel Infectious Diseases: The 2024 Flood-Related Leptospirosis Outbreak in Southern Brazil and Other Red Lights. Pollutants. 2024; 4(3):424-433. https://doi.org/10.3390/pollutants4030028
Chicago/Turabian StyleZiliotto, Marina, José Artur Bogo Chies, and Joel Henrique Ellwanger. 2024. "Extreme Weather Events and Pathogen Pollution Fuel Infectious Diseases: The 2024 Flood-Related Leptospirosis Outbreak in Southern Brazil and Other Red Lights" Pollutants 4, no. 3: 424-433. https://doi.org/10.3390/pollutants4030028
APA StyleZiliotto, M., Chies, J. A. B., & Ellwanger, J. H. (2024). Extreme Weather Events and Pathogen Pollution Fuel Infectious Diseases: The 2024 Flood-Related Leptospirosis Outbreak in Southern Brazil and Other Red Lights. Pollutants, 4(3), 424-433. https://doi.org/10.3390/pollutants4030028