An Integrated Strategy to Treat and Control Acid Mine Drainage from Waste Rock and Underground Workings at the Former Franklin Mine in Nova Scotia, Canada: Field Performance Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.1.1. Pre-Reclamation
2.1.2. Reclamation Efforts
- (i).
- Consolidated and capped waste rock pile
- (ii).
- Clean-up of Franklin Site and Waste Area
- (iii).
- Passive treatment system
2.2. Reclamation Objectives
2.3. Field Monitoring
2.3.1. Water Influx to WRP
2.3.2. Oxygen Influx to WRP
2.3.3. Waste Rock Acidity
2.3.4. Basal Seepage from WRP
2.3.5. Groundwater Quality
2.3.6. Surface Water Quality
3. Results and Discussion
3.1. WRP Cover Performance
3.1.1. Water Ingress
3.1.2. Oxygen Ingress
3.1.3. Landform Stability
3.2. Groundwater
3.2.1. Groundwater Flow Regime
3.2.2. AMD Seepage from WRP
Basal Seepage Rate
Basal Seepage Quality
Acidity Loading from WRP
3.2.3. AMD Groundwater Plume
3.2.4. Groundwater Discharge to No. 5 Prospect Tunnel
3.3. Surface Water
3.3.1. WRP and FSWA
3.3.2. No. 5 Prospect Drain Tunnel
3.3.3. Discharge to Sullivan’s Pond
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Waste Rock Source | Franklin/ No. 5 Prospect | Colonial (Colonial 1 + 4) | Atlantic | Franklin WRP Weighted Mean | ||||
---|---|---|---|---|---|---|---|---|
Proportion of Waste on WRP (%) | 69 | 27 | 4 | 100 | ||||
WR Parameters | Units | Mean | Median | Mean | Median | Mean | Median | Mean |
Field paste pH | - | 2.57 | 2.88 | 3.41 | 4.07 | 2.40 | 2.46 | 2.67 |
Field EC | μS/cm | 1028 | 619 | 305 | 181 | 2540 | 2575 | 897 |
Lab paste pH | - | 3.43 | 3.41 | 3.49 | 3.62 | 3.29 | 3.45 | 3.44 |
ANP | kg CaCO3/t | 3.10 | −1.30 | 4.13 | −0.85 | −5.40 | −6.10 | 3.02 |
AGP | kg CaCO3/t | 21.50 | 12.00 | 8.15 | 8.30 | 11.10 | 10.60 | 17.48 |
NNP | kg CaCO3/t | −18.40 | −13.30 | −4.02 | −9.15 | −16.50 | 15.20 | −14.46 |
ANP/AGP | ratio | 0.14 | −0.11 | 0.51 | −0.10 | −0.49 | −0.58 | 0.17 |
Total Sulfur | % | 1.45 | 1.17 | 0.93 | 0.86 | 1.34 | 1.25 | 1.31 |
Sulfide-sulfur | % | 0.84 | 0.48 | 0.33 | 0.36 | 0.36 | 0.34 | 0.68 |
Sulfide-sulfur as a % of Total Sulfur | % | 53.00 | 34.00 | 28.00 | 34.00 | 27.00 | 27.00 | 45.00 |
Sulfate-sulfur | % | 0.67 | 0.43 | 0.38 | 0.30 | 0.78 | 0.80 | 0.60 |
Stored Acidity | 20.94 | 13.44 | 11.88 | 9.38 | 24.38 | 25.00 | 18.63 | |
Carbon | % | 24.00 | 27.00 | 26.58 | 28.50 | 12.80 | 12.30 | 24.23 |
Carbon trioxide | % | 2.20 | 0.15 | 6.38 | 0.26 | 0.10 | 0.10 | 3.23 |
Carbonate ANP | kg CaCO3/t | 36.60 | 2.50 | 106.32 | 4.35 | 1.50 | 1.40 | 53.85 |
References
- Mining Association of Canada. The Canadian Mining Story: Economic Impacts and Drivers for the Global Energy Transition; Report, 9 May 2023; The Mining Association of Canada: Ottawa, ON, Canada, 2023; p. 102. [Google Scholar]
- Simate, G.S.; Ndlovu, S. Acid mine drainage: Challenges and opportunities. J. Environ. Chem. Eng. 2014, 2, 1785–1803. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, C.; Du, S.; Zhang, Z.; Lu, W.; Su, P.; Jiao, Y.; Zhao, Y. A review: The formation, prevention, and remediation of acid mine drainage. Environ. Sci. Pollut. Res. 2023, 30, 111871–111890. [Google Scholar] [CrossRef]
- Elghali, A.; Benzaazoua, M.; Taha, Y.; Amar, H.; Ait-khouia, Y.; Bouzahzah, H.; Hakkou, R. Prediction of acid mine drainage. Earth-Sci. Rev. 2023, 241, 104421. [Google Scholar] [CrossRef]
- Bao, Y.; Guo, C.; Lu, G.; Yi, X.; Wang, H.; Dang, Z. Role of microbial activity in Fe(III) hydroxysulfate mineral transformations in an acid mine drainage-impacted site from the Dabaoshan Mine. Sci. Total Environ. 2018, 616–617, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Almpanis, A.; Power, C. Complex electrical measurements of waste rock during acid mine drainage generation and release: Kinetic column tests. J. Environ. Manag. 2024, 351, 119996. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Lu, Y.; Xu, J.; Geng, H.; Li, Y. Assessment of heavy metals leachability characteristics and associated risk in typical acid mine drainage (AMD)-contaminated river sediments from North China. J. Clean. Prod. 2023, 413, 137338. [Google Scholar] [CrossRef]
- Neamtiu, I.A.; Al-Abed, S.R.; McKernan, J.L.; Baciu, C.L.; Gurzau, E.S.; Pogacean, A.O.; Bessler, S.M. Metal contamination in environmental media in residential areas around Romanian mining sites. Rev. Environ. Health 2017, 32, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Equeenuddin, S.M.; Tripathy, S.; Sahoo, P.K.; Panigrahi, M.K. Hydrogeochemical characteristics of acid mine drainage and water pollution at Makum Coalfield, India. J. Geochem. Explor. 2010, 105, 75–82. [Google Scholar] [CrossRef]
- Sajjad, W.; Ilahi, N.; Kang, S.; Bahadur, A.; Banerjee, A.; Zada, S.; Ali, B.; Rafiq, M.; Zheng, G. Microbial diversity and community structure dynamics in acid mine drainage: Acidic fire with dissolved heavy metals. Sci. Total Environ. 2024, 909, 168635. [Google Scholar] [CrossRef]
- Alvarenga, P.; Guerreiro, N.; Simões, I.; Imaginário, M.J.; Palma, P. Assessment of the environmental impact of acid mine drainage on surface water, stream sediments, and macrophytes using a battery of chemical and ecotoxicological indicators. Water 2021, 13, 1436. [Google Scholar] [CrossRef]
- Munyai, R.; Ogola, H.J.O.; Modise, D.M. Microbial Community Diversity Dynamics in Acid Mine Drainage and Acid Mine Drainage-Polluted Soils: Implication on Mining Water Irrigation Agricultural Sustainability. Front. Sustain. Food Syst. 2021, 5, 701870. [Google Scholar] [CrossRef]
- Chandra, G.V.; Ghosh, P.K. Human and ecological risk assessment of toxic metals in sediment near coal mining dump yard and the pond receiving acid mine drainage. Int. J. Environ. Anal. Chem. 2023, 1–24. [Google Scholar] [CrossRef]
- Madejón, P.; Caro-Moreno, D.; Navarro-Fernández, C.M.; Rossini-Oliva, S.; Marañón, T. Rehabilitation of waste rock piles: Impact of acid drainage on potential toxicity by trace elements in plants and soil. J. Environ. Manag. 2021, 280, 111848. [Google Scholar] [CrossRef] [PubMed]
- Acharya, B.S.; Kharel, G. Acid mine drainage from coal mining in the United States—An overview. J. Hydrol. 2020, 588, 125061. [Google Scholar] [CrossRef]
- Chen, G.; Ye, Y.; Yao, N.; Hu, N.; Zhang, J.; Huang, Y. A critical review of prevention, treatment, reuse, and resource recovery from acid mine drainage. J. Clean. Prod. 2021, 329, 129666. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, C.; Ni, J.; Yue, S. Global trends and future prospects of acid mine drainage research. Environ. Sci. Pollut. Res. 2023, 30, 109233–109249. [Google Scholar] [CrossRef] [PubMed]
- Merritt, P.; Power, C. Assessing the long-term evolution of mine water quality in abandoned underground mine workings using first-flush based models. Sci. Total Environ. 2022, 846, 157390. [Google Scholar] [CrossRef]
- Younger, P.L. Predicting temporal changes in total iron concentrations in groundwaters flowing from abandoned deep mines: A first approximation. J. Contam. Hydrol. 2000, 44, 47–69. [Google Scholar] [CrossRef]
- Younger, P.L. Mine water pollution in Scotland: Nature, extent and preventative strategies. Sci. Total Environ. 2001, 265, 309–326. [Google Scholar] [CrossRef]
- Shengo, L.M. Review of Practices in the Managements of Mineral Wastes: The Case of Waste Rocks and Mine Tailings. Water Air Soil. Pollut. 2021, 232, 273. [Google Scholar] [CrossRef]
- Qureshi, A.; Maurice, C.; Öhlander, B. Potential of coal mine waste rock for generating acid mine drainage. J. Geochem. Explor. 2016, 160, 44–54. [Google Scholar] [CrossRef]
- Molson, J.W.; Fala, O.; Aubertin, M.; Bussière, B. Numerical simulations of pyrite oxidation and acid mine drainage in unsaturated waste rock piles. J. Contam. Hydrol. 2005, 78, 343–371. [Google Scholar] [CrossRef] [PubMed]
- Park, I.; Tabelin, C.B.; Jeon, S.; Li, X.; Seno, K.; Ito, M.; Hiroyoshi, N. A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere 2019, 219, 588–606. [Google Scholar] [CrossRef] [PubMed]
- Daraz, U.; Li, Y.; Ahmad, I.; Iqbal, R.; Ditta, A. Remediation technologies for acid mine drainage: Recent trends and future perspectives. Chemosphere 2023, 311, 137089. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.B.; Hallberg, K.B. Acid mine drainage remediation options: A review. Sci. Total Environ. 2005, 338, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Akcil, A.; Koldas, S. Acid mine drainage (AMD): Causes, treatment and case studies. J. Clean. Prod. 2006, 14, 1139–1145. [Google Scholar] [CrossRef]
- Kefeni, K.K.; Msagati, T.A.M.; Mamba, B.B. Acid mine drainage: Prevention, treatment options, and resource recovery: A review. J. Clean. Prod. 2017, 151, 475–493. [Google Scholar] [CrossRef]
- Power, C.; Ramasamy, M.; MacAskill DMacPhee, J.; Shea JMayich, D.; Baechler, F.; Mkandawire, M. Five-year performance monitoring of a high-density polyethylene (HDPE) cover system at a reclaimed mine waste rock pile in the Sydney Coalfield (Nova Scotia, Canada). Environ. Sci. Pollut. Res. 2017, 24, 26744–26762. [Google Scholar] [CrossRef] [PubMed]
- Power, C.; Ramasamy, M.; Mkandawire, M. Performance assessment of a single-layer moisture store-and-release cover system at a mine waste rock pile in a seasonally humid region (Nova Scotia, Canada). Environ. Monit. Assess. 2018, 190, 186. [Google Scholar] [CrossRef] [PubMed]
- Flatley, A.; Markham, A. Establishing effective mine closure criteria for river diversion channels. J. Environ. Manag. 2021, 287, 112287. [Google Scholar] [CrossRef] [PubMed]
- MEND (Mine Environment Neutral Drainage). Design, Construction and Performance Monitoring of Cover Systems for Waste Rock and Tailings: Volume 1—Summary. Canadian Mine Environment Neutral Drainage Program, Project 2.21.4a. 2004. Available online: https://mend-nedem.org/mend-report/design-construction-and-performance-monitoring-of-cover-systems-for-waste-rock-and-tailings-volume-1-summary/ (accessed on 20 September 2024).
- Scanlon, B.R.; Reedy, R.C.; Keese, K.E.; Dwyer, S.F. Evaluation of evapotranspirative covers for waste containment in arid and semi-arid regions in the southwestern USA. Vadose Zone J. 2005, 4, 55–71. [Google Scholar] [CrossRef]
- Hersey, D.; Power, C. Assessing the importance of drainage layers over geomembrane liners within engineered cover systems: Seven years of field monitoring at three mine waste rock piles. Geotext. Geomembr. 2023, 51, 381–389. [Google Scholar] [CrossRef]
- Hersey, D.; Power, C. Assessing water dynamics and net percolation rates within engineered cover systems for mine waste rock piles: A long-term field monitoring study. J. Hydrol. 2023, 627 Pt B, 130471. [Google Scholar] [CrossRef]
- INAP (The International Network for Acid Prevention). Global Acid Rock Drainage Guide. 2014. Available online: https://www.gardguide.com/index.php?title=Main_Page (accessed on 18 September 2024).
- Mosai, A.K.; Ndlovu, G.; Tutu, H. Improving acid mine drainage treatment by combining treatment technologies: A review. Sci. Total Environ. 2024, 919, 170806. [Google Scholar] [CrossRef] [PubMed]
- Ziemkiewicz, P.F.; Skousen, J.G.; Simmons, J. Long-term Performance of Passive Acid Mine Drainage Treatment Systems. Mine Water Environ. 2003, 22, 118–129. [Google Scholar] [CrossRef]
- Clyde, E.J.; Champagne, P.; Jamieson, H.E.; Gorman, C.; Sourial, J. The use of a passive treatment system for the mitigation of acid mine drainage at the Williams Brothers Mine (California): Pilot-scale study. J. Clean. Prod. 2016, 130, 116–125. [Google Scholar] [CrossRef]
- Wolkersdorfer, C. Mine Water Treatment-Active and Passive Methods; Springer: Berlin/Heidelberg, Germany, 2022; ISBN 3662657694. [Google Scholar]
- Skousen, J.; Zipper, C.E.; Rose, A.; Ziemkiewicz, P.F.; Nairn, R.; McDonald, L.M.; Kleinmann, R. Review of Passive Systems for Acid Mine Drainage Treatment. Mine Water Environ. 2017, 36, 133–153. [Google Scholar] [CrossRef]
- Hwang, S.K.; Jho, E.H. Heavy metal and sulfate removal from sulfate-rich synthetic mine drainages using sulfate reducing bacteria. Sci. Total Environ. 2018, 635, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, A.; Andrade, L.; Grossi, L.; Pires, W.; Amaral, M. Acid mine drainage treatment by nanofiltration: A study of membrane fouling, chemical cleaning, and membrane ageing. Sep. Purif. Technol. 2018, 192, 185–195. [Google Scholar] [CrossRef]
- Baechler, F. Regional Water Resources, Sydney Coalfield, Nova Scotia; Nova Scotia Department of the Environment: Halifax, Nova Scotia, 1986; p. 111.
- Penman, H.L. Natural evaporation from open water, bare and grass. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar] [CrossRef]
- Thorstenson, D.C.; Pollock, D.W. Gas transport in unsaturated porous media: The adequacy of Fick’s law. Rev. Geophys. 1989, 27, 61–78. [Google Scholar] [CrossRef]
- Rossabi, J.; Falta, R.W. Analytical Solution for Subsurface Gas Flow to a Well Induced by Surface Pressure Fluctuations. Groundwater 2005, 40, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Nordstrom, D.K.; Blowes, D.W.; Ptacek, C.J. Hydrogeochemistry and microbiology of mine drainage: An update. J. Appl. Geochem. 2015, 57, 3–16. [Google Scholar] [CrossRef]
- Downing, B.W. Acid–base accounting test procedures. In Acid Mine Drainage, Rock Drainage, and Acid Sulfate Soils: Causes, Assessment, Prediction, Prevention, and Remediation; Jacobs, J.A., Lehr, J.H., Testa, S.M., Eds.; Wiley: New York, NY, USA, 2014; pp. 217–227. [Google Scholar]
- ASTM D2487–06; Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International: West Conshohocken, PA, USA, 2006.
- King, M.; Check, G.; Carey, G.; Abbey, D.; Baechler, F. Groundwater and contaminant transport modelling at the Sydney Tar Ponds. In Proceedings of the 56th Annual Canadian Geotechnical Conference and 4th Joint IAH-CNC/CGS Groundwater Specialty Conference, Winnipeg, MB, Canada, 29 September–1 October 2003. [Google Scholar]
- Taylor, J.; Pape, S.; Murphy, N. A summary of passive and active treatment technologies for acid and metalliferous drainage (AMD). In Proceedings of the 5th Australian Workshop on Acid Mine Drainage, Fremantle, Australia, 29–31 August 2005. [Google Scholar]
- Sandlin, W.; Langman, J.; Moberly, J. A review of acid rock drainage, seasonal flux of discharge and metal concentrations, and passive treatment system limitations. Int. J. Min. Reclam. Environ. 2021, 35, 34–47. [Google Scholar] [CrossRef]
- Ziemkiewicz, P.F.; Skousen, J.G.; Brant, D.L.; Sterner, P.L.; Lovett, R.J. Acid Mine Drainage Treatment with Armored Limestone in Open Limestone Channels. J. Environ. Qual. 1997, 26, 1017–1024. [Google Scholar] [CrossRef]
Section | Component | Sample Locations | Monitoring Period |
---|---|---|---|
Waste rock pile | Cover system Basal seepage | Weather station, soil monitoring stations, weir 10CM-2G | January 2012–December 2018 January 2012–December 2018 |
Surface water | No. 5 Prospect tunnel Leach bed WRP sedimentation pond Slag leach pad Limestone channel Sullivan’s Pond inflow Sullivan’s Pond outflow | 08SW-13 10SW-07 10SW-01 11SW-01, 11SW-02 11SW-03 08SW-06 08SW-07 | January 2011–December 2018 January 2011–April 2014 January 2011–April 2014 January 2011–April 2014 January 2012–December 2018 January 2011–April 2014 January 2011–April 2014 |
Groundwater | WRP plume Former FSWA | 10MW-01, 10MW-02, 10MW-03, 10MW-04 09MW-03, 08MW-04, 08MW-05, 08MW-07, 08MW-10, 08MW-12 | January 2011–April 2014 January 2012–April 2014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Power, C. An Integrated Strategy to Treat and Control Acid Mine Drainage from Waste Rock and Underground Workings at the Former Franklin Mine in Nova Scotia, Canada: Field Performance Monitoring. Pollutants 2025, 5, 1. https://doi.org/10.3390/pollutants5010001
Power C. An Integrated Strategy to Treat and Control Acid Mine Drainage from Waste Rock and Underground Workings at the Former Franklin Mine in Nova Scotia, Canada: Field Performance Monitoring. Pollutants. 2025; 5(1):1. https://doi.org/10.3390/pollutants5010001
Chicago/Turabian StylePower, Christopher. 2025. "An Integrated Strategy to Treat and Control Acid Mine Drainage from Waste Rock and Underground Workings at the Former Franklin Mine in Nova Scotia, Canada: Field Performance Monitoring" Pollutants 5, no. 1: 1. https://doi.org/10.3390/pollutants5010001
APA StylePower, C. (2025). An Integrated Strategy to Treat and Control Acid Mine Drainage from Waste Rock and Underground Workings at the Former Franklin Mine in Nova Scotia, Canada: Field Performance Monitoring. Pollutants, 5(1), 1. https://doi.org/10.3390/pollutants5010001